Given fat matrix ${\rm V} \in \Bbb R^{d \times n}$, let
$${\rm F} ({\rm x}) := {\rm V} \,\mbox{diag} ({\rm x}) {\rm V}^\top, \qquad {\rm G} ({\rm x}) := \left( {\rm F} ({\rm x}) \right)^{-1}$$
Using Sherman-Morrison,
$$\begin{aligned} {\rm G} ({\rm x} + h \, {\rm e}_i) = \left( {\rm F} ({\rm x} + h \, {\rm e}_i) \right)^{-1} = \left( {\rm F} ({\rm x}) + h \, {\rm v}_i {\rm v}_i^\top \right)^{-1} &= {\rm G} ({\rm x}) - h \,\frac{{\rm G} ({\rm x}) \, {\rm v}_i {\rm v}_i^\top {\rm G} ({\rm x})}{1 + h \, {\rm v}_i^\top {\rm F} ({\rm x}) \,{\rm v}_i} \\ &= {\rm G} ({\rm x}) - h \,{\rm G} ({\rm x}) \, {\rm v}_i {\rm v}_i^\top {\rm G} ({\rm x}) + \mathcal O \left( h^2 \right)\end{aligned}$$
and, thus,
$$\partial_i {\rm G} ({\rm x}) = \color{blue}{- {\rm G} ({\rm x}) \, {\rm v}_i {\rm v}_i^\top {\rm G} ({\rm x})}$$
which is what Господин Лисица obtained.
matrices matrix-calculus derivatives