These notes are a great introduction to deformation quantization but I failed to check the validity of the statement p.9, right before (5.18).
Context: let $(\mathcal{A},+,\mu)$ be an algebra. $\mu:\mathcal{A}\times \mathcal{A} \to \mathcal{A}$ standing for multiplication. Deformation consists in considering a family (paramatrized by $\nu$ in a yet to be chosen space) of product on $\mathcal{A}[[\nu]]$ (formal power series with coefficients in $\mathcal{A}$) generically given by $$ \forall\ f,g\in \mathcal{A},\quad \mu_{\nu}(f,g) := \mu(f,g) + \sum_{k=1}^{+\infty} \nu^k \mu_k (f,g) \label{1}\tag{1}$$ i.e. by a family of bilinear maps $\mu_k:\mathcal{A}\times \mathcal{A} \to \mathcal{A}$ satisfying some conditions and extended to elements $F, G\in \mathcal{A}[[\nu]]$ of the form $F=\sum_{k=1}^{+\infty} \nu^k f_{k},\ f_k \in \mathcal{A}$ by $\mathbb{K}[[\nu]]$-bilinearity. (the idea behind formal power series, as far as I understand, is to ignore convergence issues but still have a structure where one can compare terms of the same degree in $\nu$").
Two of these star-product are equivalent if there exists an invertible algebra isomorphism (transition map) $T:(\mathcal{A}[[\nu]],+,\mu_{\nu}) \longrightarrow (\mathcal{A}[[\nu]],+,\rho_{\nu})$, i.e. a map such that $$ \forall\ F,G \in \mathcal{A}[[\nu]], \quad T\big(\mu_{\nu}(F,G)\big)= \rho_{\nu}(T(F),T(G))$$
Question: Let $\mathcal{A}=\mathcal{C}^{\infty}(\mathbb{R}^2)$ and denote $(a, \overline{a})$ or $(b, \overline{b}$) the variables of the functions. I want to check that the normal product ( (5.4) p.8; with the more usual notation for products) $$f \ast_N g := \sum_{k=0}^{+\infty} \frac{\hbar^k}{k!} \frac{\partial^k f}{\partial a^k} \frac{\partial^k g}{\partial \overline{a}^k} = f\, e^{\hbar \overleftarrow{\partial}_a \overrightarrow{\partial}_{\overline{a}}}\, g \label{2}\tag{2}$$ is equivalent to the Moyal product ((5.15) p.9, one can consider $\hbar$ as the deformation parameter... although there is usually the factor as in (\ref{5})) $$ f \ast_M g := \sum_{k=0}^{+\infty} \left(\frac{\hbar}{2} \right)^k \frac{1}{k!} \left. \left( \frac{\partial }{\partial a} \frac{\partial }{\partial \overline{b}} - \frac{\partial }{\partial \overline{a}} \frac{\partial }{\partial b}\right)^k f\big(a, \overline{a}\big) g\big(b, \overline{b}\big) \right|_{\genfrac{}{}{0pt}{1}{a=b}{\overline{a}=\overline{b}}} = f\, e^{\frac{\hbar}{2}\big( \overleftarrow{\partial}_a \overrightarrow{\partial}_{\overline{a}} - \overleftarrow{\partial}_{\overline{a}} \overrightarrow{\partial}_{a} \big)}\, g \label{3}\tag{3}$$ i.e. $$ T\big(f \ast_N g \big) = T(f) \ast_M T(g)\quad \text{with}\quad T = \genfrac{}{}{0pt}{0}{"}{}\!\!\exp\left(-\frac{\hbar}{2} \frac{\partial^2}{\partial a\, \partial \overline{a}} \right)\genfrac{}{}{0pt}{0}{"}{} \label{4}\tag{4}$$
Remarks:
- In fact I already checked (\ref{4}) up to second order in $\hbar$ but it did not work at order 3 (although I'm not sure as the calculations were quite tedious...). It was not a priori clear that (\ref{4}) hold, one could have the other way round $ T\big(f \ast_M g \big) = T(f) \ast_N T(g)$ instead but this seems to fail at order 1. I only want to check the first few orders, but I would gladly take a proof for all order. I will soon write what I have done, but as I mentionned, it's tedious.
- The Moyal product is first defined in the text (3.5-3.6) p.5 by $$ f \ast_M g := \sum_{k=0}^{+\infty} \frac{\nu^k}{k!} \underbrace{\left(\frac{\partial }{\partial q_1} \frac{\partial }{\partial p_{2}} - \frac{\partial }{\partial p_{1}} \frac{\partial }{\partial q_2} \right)^k f(q_1,p_1)\, g(q_2,p_2)}_{\mu_k(f,g)}\left.\vphantom{\frac{T}{T}}\right|_{\genfrac{}{}{0pt}{1}{q_1=q_2}{p_{1}=p_{2}}}\quad \text{with}\quad \nu = \frac{i\hbar}{2} \label{5}\tag{5}$$ and it does coincide with (\ref{3}) via (these are the correct $\sqrt{2}$ factors...) $$ \left\lbrace \begin{aligned} a & := \frac{1}{\sqrt{2}} \left(q + i\hspace{.5pt} p \right) \\ \overline{a} & := \frac{1}{\sqrt{2}} \left( q - i\hspace{.5pt} p \right) \end{aligned} \right. \enspace \Longrightarrow\quad \left\lbrace \begin{aligned} \frac{\partial}{\partial\hspace{.7pt} q} & = \frac{\partial\hspace{.7pt} a}{\partial\hspace{.7pt} q} \frac{\partial}{\partial\hspace{.7pt} a} + \frac{\partial\hspace{.7pt} \overline{a}}{\partial \hspace{.7pt} q} \frac{\partial}{\partial\hspace{.7pt} \overline{a}} =\frac{1}{\sqrt{2}} \left( \frac{\partial}{\partial\hspace{.7pt} a} + \frac{\partial}{\partial\hspace{.7pt} \overline{a}} \right) \\ \frac{\partial}{\partial\hspace{.7pt} p} & = \frac{\partial\hspace{.7pt} a}{\partial\hspace{.7pt} p} \frac{\partial}{\partial\hspace{.7pt} a} + \frac{\partial\hspace{.7pt} \overline{a}}{\partial \hspace{.7pt} p} \frac{\partial}{\partial\hspace{.7pt} \overline{a}} = \frac{i}{\sqrt{2}} \left( \frac{\partial}{\partial\hspace{.7pt} a} - i\, \frac{\partial}{\partial\hspace{.7pt} \overline{a}}\right) \end{aligned} \right. $$
- To make (\ref{3}) (same for (\ref{5})) more explicit, let me write the $k=2$ term: (notation $\displaystyle \partial_a=\frac{\partial}{\partial a},\ \partial_{ab}= \frac{\partial^2}{\partial a \partial b}$ etc.) $$\begin{split} \mu_2(f,g) &= \Big(\partial_{aa\overline{b}\overline{b}} - 2 \partial_{a\overline{a}b\overline{b}} + \partial_{\overline{a}\overline{a}bb} \Big) f(a,\overline{a})g(b,\overline{b})\left.\vphantom{\frac{T}{T}}\right|_{\genfrac{}{}{0pt}{1}{a=b}{\overline{a}=\overline{b}}}\\ &= (\partial_{aa}f)(\partial_{\overline{a}\overline{a}}g) - 2 (\partial_{a\overline{a}}f)(\partial_{b\overline{b}}g) + (\partial_{\overline{a}\overline{a}}f) (\partial_{aa}g) \end{split} \label{6}\tag{6}$$ One can also use the $\overleftarrow{\partial}$ or $\overrightarrow{\partial}$ notations or a tensorial notation.