Remark: @VIVID gave a nice solution. I rewrote it in elementary way (without using derivative, extrema). Note that while we used calculus to motivate our solution, we do not need to include any
calculus in the solution!
Letting $x = 0$, we have $|1 - q| \le \frac{\sqrt{2}-1}{2}$ or
$$1 - \frac{\sqrt{2}-1}{2} \le q \le 1 + \frac{\sqrt{2}-1}{2}. \tag{1}$$
Letting $x = 1$, we have $|-p - q| \le \frac{\sqrt{2}-1}{2}$ or
$$-p - \frac{\sqrt{2}-1}{2} \le q \le -p + \frac{\sqrt{2}-1}{2}. \tag{2}$$
From (1) and (2), we know that $p < 0$ (reason: if $p\ge 0$ then $-p + \frac{\sqrt{2}-1}{2} < 1 - \frac{\sqrt{2}-1}{2}$).
Since $-\frac{p}{\sqrt{1+p^2}} \in [0, 1]$, by letting $x = -\frac{p}{\sqrt{1+p^2}}$,
we have $|\sqrt{p^2+1} - q| \le \frac{\sqrt{2}-1}{2}$ or
$$\sqrt{p^2+1} - \frac{\sqrt{2}-1}{2} \le q \le \sqrt{p^2 + 1} + \frac{\sqrt{2}-1}{2}. \tag{3}$$
From (2) and (3), since $\sqrt{p^2 + 1} > -p$, we have
$$\sqrt{p^2+1} - \frac{\sqrt{2}-1}{2} \le -p + \frac{\sqrt{2}-1}{2}$$
that is
$\sqrt{p^2 + 1} + p - \sqrt{2} + 1 \le 0$ or
$\frac{(p^2+1) - 2}{\sqrt{p^2+1} + \sqrt{2}} + (p+1) \le 0$ or
$\frac{(p - 1 + \sqrt{p^2+1} + \sqrt{2})(p+1)}{\sqrt{p^2+1} + \sqrt{2}} \le 0$ which results in
$p \le -1$.
From (1) and (3), since $1 + \frac{\sqrt{2}-1}{2} \le \sqrt{p^2 + 1} + \frac{\sqrt{2}-1}{2}$, we have
$$\sqrt{p^2+1} - \frac{\sqrt{2}-1}{2} \le 1 + \frac{\sqrt{2}-1}{2}$$
that is $p^2 \le 1$. Thus, we have $p = -1$.
From (1) and (3), we have $q = 1 + \frac{\sqrt{2}-1}{2}$.
Finally, when $p = -1, q = 1 + \frac{\sqrt{2}-1}{2}$, it is easy to prove that $|\sqrt{1-x^2} + x - 1 - \frac{\sqrt{2}-1}{2}| \le \frac{\sqrt{2}-1}{2}, \forall x \in [0, 1]$
that is $1\le \sqrt{1-x^2} + x \le \sqrt{2}, \forall x\in [0, 1]$.
Thus, $p = -1, q = 1 + \frac{\sqrt{2}-1}{2}$ is the only one pair satisfies the statement.