$\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}\require{cancel}
&\color{#f00}{\lim_{x \to 1}\pars{{23 \over 1 - x^{23}} - {11 \over 1 - x^{11}}}} =
\lim_{x \to 1}\bracks{{1 \over 1-x}
\pars{{23 \over \sum_{k = 0}^{22}x^{k}} - {11 \over \sum_{k = 0}^{10}x^{k}}}}
\\[5mm] = &\
\lim_{x \to 1}
\bracks{23\,{\sum_{k = 1}^{22}k\,x^{k - 1} \over
\pars{\sum_{k = 0}^{22}x^{k}}^{2}} -
11\,{\sum_{k = 1}^{10}k\,x^{k - 1} \over \pars{\sum_{k = 0}^{10}x^{k}}^{2}}}
\qquad\pars{~By\ L'H\hat{o}pital\ Rule}
\\[5mm] = &\
23\,{\sum_{k = 1}^{22}k \over \pars{\sum_{k = 0}^{22}1}^{2}} -
11\,{\sum_{k = 1}^{10}k \over \pars{\sum_{k = 0}^{10}1}^{2}}
\\[5mm] = &\
\underbrace{\cancel{23}\,{22\cancel{\pars{22 + 1}}/2 \over \cancel{23^{2}}}}_{\ds{=\ 11}}\ -\
\underbrace{\cancel{11}\,{10\cancel{\pars{10 + 1}}/2 \over \cancel{11^{2}}}}_{\ds{=\ 5}}\ = \ 11 - 5 = \color{#f00}{6}
\end{align}