$$\prod_{k=1}^{\infty} \left(1+\frac{z^2}{k^2}\right)=\frac{\sinh \pi z}{\pi z}.$$ Put $z=1$ to get $$\prod_{k=1}^{\infty} \left(1+\frac{1}
{k^2}\right)=\frac{\sinh \pi}{\pi}$$
Edit: An Elementry Proof:
$$F_n(x)= x(x-\pi)(x+\pi)(x-2\pi)(x+2\pi)......(x-n\pi)(x+n\pi)$$ $\sin x$, is finite and has infinitely many zero. $F_n(x)$ has $2n+1$ zeros but as $n\to \infty$ $\lim_{n\to \infty} F_n(x)\to \infty$, so $F_n$ cannot represent $\sin x$. But $$ G_n(x)=x(1-\frac{x}{\pi})(1+\frac{x}{\pi}) (1-\frac{x}{2\pi})(1+\frac{x}{2\pi}).....(1-\frac{x}{n\pi})(1+\frac{x}{n\pi}).~~~~~(1)$$ So $G_n$ can represent $\sin x$ when $G_n$ converges as $n\to \infty$, it also gives $\frac{\sin x}{x}=1$ when $x \to 0$. Thus Eq. (1) gives the correct representation of $$\frac{\sin x}{x}=\prod_{n=1}^{\infty} \left(1-\frac{x^2}{n^2\pi^2}\right) \implies \frac{\sinh \pi z}{ \pi z}=\prod_{n=1}^{\infty} \left(1+\frac{z^2}{n^2}\right) $$
Here we took $x=iz.$