It is true when $\,d := \gcd\{a_i\} = 1.\,$ More generally it is the special case $\,d = 1,\,m = \ell\,$ of the Theorem below, which is the integral-scaled version of the gcd formula for reduced fractions $\frac{a_i}{b_i}$ (putting $\,m=1\,$ below gives the $k$-ary extension of this formula), which says the the gcd of reduced fractions is the gcd of their numerators over the lcm of their denominators (and dually for lcm).
Theorem $\, $ If $\,m,a_i,b_i\in\Bbb Z,\,$ $\,b_i\mid m a_i,\,$ $\,\color{#c00}{\gcd(b_i,a_i/d)\!=\!1},\,$ $\,d\! =\! \gcd\{a_i\},\,$ $\,\ell\! =\! {\rm lcm}\{b_i\}\,$ then
$\qquad\qquad\quad \gcd\left(\!\dfrac{ma_1}{b_1},\ldots,\dfrac{ma_k}{b_k}\!\right)\, =\, \dfrac{m\gcd(a_1,\ldots,a_k)}{{\rm lcm}(b_1,\:\!\ldots,\:\!b_k)\!\!\!\!\!\!}\,=\,\dfrac{md}{\ell}$
$\begin{align}{\bf Proof}\
\ \ c\,&\mid \gcd\{ma_i/b_i\}\\[.1em]
\iff \, \ c\,&\mid {ma_i}/{b_i},\,\forall i, \ \rm by\ gcd\ \color{#90f}{universal}\ property\\[.3em]
\iff\! cb_i&\mid ma_i,\, \forall i\\[.3em]
\iff\ \color{#c00}{b_i}&\mid ma_i/c={md}/c\,(\color{#c00}{a_i/d}),\, \forall i,\!\!\!\!\!\!\!\!\!\!\!\!\!\!{\smash{\overbrace{\&\ \ md/c\in\Bbb Z}^{\textstyle c\mid ma_i\Rightarrow c\mid\gcd\{ma_i\}= md\!\!\!\!\!\!\!\!\!\!\!}}}\\[.1em]
\iff\ b_i&\mid {md}/{c},\,\forall i,\ \ {\rm by\ } \color{#c00}{\gcd(b_i,a_i/d)\!=\!1}\ \text{& Euclid's Lemma}\\[.1em]
\iff\ \ell\ &\mid {md}/c,\ \ \ \ \ \ \ \ \rm by\ lcm\ \color{#90f}{universal}\ property\\[.1em]
\iff\:\! \ell c&\mid md\\[.1em]
\iff\ c\ &\mid {md}/\ell
\end{align}$
We used the gcd distributive law in $\,\gcd\{ma_i\} = m\gcd\{a_i\} = md,\,$ and Euclid's Lemma and the gcd & lcm $\rm \color{#90f}{universal}\ properties$.
Remark $ $ Since the proof used only laws valid in every gcd domain, the theorem remains true if we replace $\Bbb Z$ by any gcd domain, e.g. any UFD.