Upper bound
For any $g\in L^2(0,\infty)$,
$$
\begin{align}
\int_0^\infty Tf(x)g(x)\,\mathrm{d}x
&=\frac1\pi\int_0^\infty\int_0^\infty\frac{f(y)g(x)}{x+y}\,\mathrm{d}y\,\mathrm{d}x\\
&=\frac1\pi\int_0^\infty\int_0^\infty\frac{f(xy)g(x)}{1+y}\,\mathrm{d}y\,\mathrm{d}x\\
&=\frac1\pi\int_0^\infty\int_0^\infty\frac{f(xy)g(x)}{1+y}\,\mathrm{d}x\,\mathrm{d}y\\
&\le\frac1\pi\int_0^\infty\|f\|_2\|g\|_2\frac{y^{-1/2}}{1+y}\mathrm{d}y\\
&=\frac1\pi\|f\|_2\|g\|_2\int_0^\infty\frac2{1+u^2}\,\mathrm{d}u\\
&=\|f\|_2\|g\|_2
\end{align}
$$
This says that $\|Tf\|_2\le\|f\|_2$ ; that is, $\|T\|_2\le1$.
Lower bound
Let
$$
f(y)=\left\{\begin{array}{}
\frac1{\sqrt{y}}&\text{for }1\le y\le\lambda\\
0&\text{otherwise}
\end{array}\right.
$$
Then $\|f\|_2=\sqrt{\log(\lambda)}$ . Furthermore,
$$
\begin{align}
Tf(x)
&=\frac1\pi\int_1^\lambda\frac{y^{-1/2}}{x+y}\,\mathrm{d}y\\
&=\frac1{\pi\sqrt{x}}\int_{1/x}^{\lambda/x}\frac{y^{-1/2}}{1+y}\,\mathrm{d}y\\
&=\frac2{\pi\sqrt{x}}\int_{\sqrt{1/x}}^{\sqrt{\lambda/x}}\frac1{1+u^2}\,\mathrm{d}u\\
&=\frac2{\pi\sqrt{x}}\left(\tan^{-1}\left(\sqrt{\lambda/x}\right)-\tan^{-1}\left(\sqrt{1/x}\right)\right)\\
&=\frac2{\pi\sqrt{x}}\tan^{-1}\left(\frac{1-1/\sqrt\lambda}{1+x/\sqrt\lambda}\sqrt{x}\right)
\end{align}
$$
For any $\alpha\gt0$,
$$
\begin{align}
\frac{\|Tf\|^2}{\|f\|^2}
&=\frac1{\log(\lambda)}\int_0^\infty|Tf(x)|^2\,\mathrm{d}x\\
&\ge\frac4{\pi^2\log(\lambda)}\int_{\lambda^\alpha}^{\lambda^{1-\alpha}}\frac1x\tan^{-1}\left(\frac{1-1/\sqrt{\lambda}}{2}\lambda^{\alpha/2}\right)^2\,\mathrm{d}x\\
&=(1-2\alpha)\frac4{\pi^2}\tan^{-1}\left(\frac{1-1/\sqrt{\lambda}}{2}\lambda^{\alpha/2}\right)^2\\
&\stackrel{\lambda\to\infty}{\to}1-2\alpha
\end{align}
$$
Since $\alpha\gt0$ was arbitrary, we get that $\|T\|_2\ge1$. Therefore, $\|T\|_2=1$.