I got this task to check that if $n_1, n_2, n_3 \in \mathbb{N}$ the $\text{gcd}(n_1, n_2, n_3) =\text{gcd}(n_1, n_2, c_1n_1 + c_2n_2 + n_3)$ is valid for any $c_1, c_2 \in \mathbb{Z}$.
I started the idea saying that if:
$\text{gcd}(n_1, n_2, n_3) = k$, only if:
$k|n_1 \land k|n_2 \land k|n_3$ which means that: $$ \left\{ \begin{array}{c} n_1=ke \\ n_2=kf \\ n_3=kg \end{array} \right. \quad e, f, g\in \mathbb{N} $$ Now $gcd(n_1, n_2, c_1n_1 + c_2n_2 + n_3) = k$ only if: $$ c_1n_1 + c_2n_2 + n_3 = kr, \quad r \in \mathbb{Z} $$ Substituting the values of $n_1, n_2, n_3$: $$ k(c_1e + c_2f + g) = kr $$ Which means that it is valid only if:$$c_1e + c_2f + g = r$$ But now I got stucked, I cannot say if this is valid for any $c_1, c_2$, could anyone help?