I have found it challenging to state this inductive argument about a cycle of reals clearly and concisely.
I would greatly appreciate if someone could show me how to make the same argument in a more standard way or offer suggestions for tightening up the argument.
Let:
- $c_1, c_2, \dots, c_n$ form a repeating cycle of $n$ reals with: $$c_{i+n} = c_i$$
- $M(c_1, c_2, \dots, c_n) = \sum\limits_{i=1}^n c_i$
Claim:
There exists $s$ such that for all $j \ge 0$: $$\sum\limits_{t=0}^j(c_{s+t}) \le \dfrac{(j+1)M(c_1,\dots,c_n)}{n}$$
Argument:
(1) Since it is a cycle, if the property holds for $0 \le j \le n-1$, it follows that for all $j \ge n$
$$\sum\limits_{t=0}^j(c_{i+t}) \le \dfrac{(j+1)M(c_1,\dots,c_n)}{n}$$
(2) Base Case: $n=2$
- This follows since $s=\text{min}(c_1,c_2) \le \dfrac{c_1+c_2}{2}$
(3) Assume that it is true for any such cycle consisting of up to $n \ge 2$ reals.
(4) Inductive Case: Let $c_1, c_2, \dots, c_{n+1}$ form a cycle of $n+1$ reals with: $$c_{i+n+1} = c_i$$
(5) There exists $k$ where $c_k \le \dfrac{M(c_1,\dots,c_{n+1})}{n+1}$
(6) Define $d_1, d_2, \dots, d_n$ such that:
$$d_i = \begin{cases} c_{k+1} - \frac{M(c_1,\dots,c_{n+1})}{n+1} + c_{k}, & i = 1\\ c_{k+i}, & i > 1\\ \end{cases}$$
so that:
$$\frac{M(d_1, \dots, d_n)}{n} = \frac{M(c_1, \dots, c_{n+1})}{n+1}$$
(7) By assumption, there exists $i$ such that for all $j \ge 0$:
$$\sum\limits_{t=0}^j(d_{i+t}) \le \frac{(j+1)M(d_1, \dots, d_n)}{n}$$
(8) Case 1: $i = 1$
$s=k$ for the desired property
For $j = 0$:
$$c_k \le \frac{M(c_1,\dots,c_{n+1})}{n+1}$$
- And, for $j \ge 1$
$$\sum\limits_{t=0}^j (c_{k+t}) = \frac{M(c_1,\dots,c_{n+1})}{n+1} + \sum\limits_{t=0}^{j-1}(d_{i+t}) \le \frac{M(c_1,\dots,c_{n+1})}{n+1} + \frac{(j)M(d_1, \dots, d_n)}{n} = \frac{(j+1)M(c_1, \dots, c_{n+1})}{n+1}$$
(9) Case 2: $i > 1$
$s=k+i$ for the desired property
For $0 \le j < n-i+1$
$$\sum\limits_{t=0}^j (c_{k+i+t}) = \sum\limits_{t=0}^j (d_{i+t}) \le \frac{(j+1)M(d_1, \dots, d_n)}{n} = \frac{(j+1)M(c_1, \dots, c_{n+1})}{n+1}$$
- For $j = n-i+1$
$$\sum\limits_{t=0}^j (c_{k+i+t}) = \frac{M(c_1,\dots,c_{n+1})}{n+1} + \sum\limits_{t=0}^{j-1} (d_{i+t}) \le \frac{M(c_1,\dots,c_{n+1})}{n+1} + \frac{(j)M(d_1, \dots, d_n)}{n} = \frac{(j+1)M(c_1, \dots, c_{n+1})}{n+1}$$
- For $j \ge n-i+2$
$$\sum\limits_{t=0}^j(c_{k+i+t}) = \frac{M(c_1,\dots,c_{n+1})}{n+1} + \sum\limits_{t=0}^{j-1}(d_{i+t}) \le \frac{M(c_1,\dots,c_{n+1})}{n+1} + \frac{(j)M(d_1, \dots, d_n)}{n} = \frac{(j+1)M(c_1, \dots, c_{n+1})}{n+1}$$
Edit:
Apologies for the rewrite in case you saw the earlier version of this argument.
I found a mistake which I believe that I have now corrected.
Edit 2:
Made changes suggested by John Omielan.