Consider the integers of the form
$\quad pq + 1, \text{where 0 } \lt q \le p $
The corresponding set of residue classes $\{[pq + 1]\}$ form a cyclic group of order $p$ with generator $[p + 1]$.
Example: If $p = 11$ then $12$ generates a cyclic subgroup of order $11$ in $(\mathbb{Z}/{121}\mathbb{Z})^\times$:
$\; {[12]}^1 \equiv \;\;\, 12 \pmod {121}$
$\; {[12]}^2 \equiv \;\;\, 23 \pmod {121}$
$\; {[12]}^3 \equiv \;\;\, 34 \pmod {121}$
$\; {[12]}^4 \equiv \;\;\, 45 \pmod {121}$
$\; {[12]}^5 \equiv \;\;\, 56 \pmod {121}$
$\; {[12]}^6 \equiv \;\;\, 67 \pmod {121}$
$\; {[12]}^7 \equiv \;\;\, 78 \pmod {121}$
$\; {[12]}^8 \equiv \;\;\,89 \pmod {121}$
$\; {[12]}^9 \equiv\; 100 \pmod {121}$
$\; {[12]}^{10} \equiv 111 \pmod {121}$
$\; {[12]}^{11} \equiv\;\;\;\, 1 \pmod {121}$
I have a direct proof of the above using Euclidean division (representation) theory, but would be interested in seeing other proofs (or links/references). Also, the wikipedia link
$\quad$ Multiplicative group of integers modulo $n$
states
...though even for prime $n$ no general formula for finding generators is known.
So I am also interested in any partial progress made in this area, determining the order of elements in ${\displaystyle (\mathbb {Z} /n\mathbb {Z} )^{\times }}$.