5

In this post @metamorphy established this remarkable result (here Sinc$(x)$ denotes $\frac{\sin(x)}x$): $$I(n)=\int_{(-\infty,\infty)^n}\text{Sinc}(\sum_{k=1}^nx_k) \prod_{k=1}^n \text{Sinc}(x_k) dx_1\cdots dx_n=\pi^n$$ The current problem is: What can we say about $$J(n)=\int_{(0,\infty)^n}\text{Sinc}(\sum_{k=1}^nx_k) \prod_{k=1}^n \text{Sinc}(x_k) dx_1\cdots dx_n=?$$ It's not hard to establish $J(1)=\frac \pi 2, J(2)=\frac {\pi^2}6$. Due to lack of enough symmetry, in general $J(n)$ can't be deduced from $I(n)$ directly. I tried to apply the method used in previous post but did not succeed. Any suggestion is appreciated.

metamorphy
  • 39,111
Infiniticism
  • 8,644
  • 1
  • 22
  • 67

2 Answers2

5

The answer is surprisingly simple: $$\color{blue}{J(n)=\pi^n B_n}$$ for $n>1$, where $B_n$ are the Bernoulli numbers.

Following the approach from the linked post, we consider (for $a_k,b_k,c_k>0$) $$\Xi=\int_{(0,\infty)^n}\left(\prod_{k=1}^n\frac{e^{-c_k x_k}\sin a_k x_k}{x_k}\right)\frac{\sin\sum_{k=1}^{n}b_k x_k}{\sum_{k=1}^{n}b_k x_k}\,dx_1\cdots dx_n;$$ this time, we cannot replace $e^{itb_k x_k}$ by $\cos tb_k x_k$, so we leave it as is and arrive at $$\Xi=\frac12\int_{-1}^1\prod_{k=1}^{n}\left(\frac{1}{2i}\log\frac{c_k+i(a_k-b_k t)}{c_k-i(a_k+b_k t)}\right)\,dt,$$ with the principal value of the logarithm.

Our $J(n)$ is obtained at $a_k=b_k(=1)$ and $c_k\to 0$: $$J(n)=\frac{1}{2^{n+1}}\int_{-1}^1\left(\pi+i\log\frac{1+t}{1-t}\right)^n\,dt.$$

Now consider the exponential generating function (for $|z|$ small enough): \begin{align*} \sum_{n=0}^\infty J(n)\frac{z^n}{n!} &=\frac12\int_{-1}^1\exp\frac{z}{2}\left(\pi+i\log\frac{1+t}{1-t}\right)\,dt \\&=\frac{e^{\pi z/2}}{2}\int_{-1}^1(1+t)^{iz/2}(1-t)^{-iz/2}\,dt \\&=e^{\pi z/2}\mathrm{B}\left(1+\frac{iz}{2},1-\frac{iz}{2}\right) \\&=e^{\pi z/2}\frac{i\pi z/2}{\sin(i\pi z/2)}=\frac{\pi z}{1-e^{-\pi z}}. \end{align*}

It just remains to recall that $z/(e^z-1)=\sum_{n=0}^\infty B_n z^n/n!$, and that $B_n=0$ for odd $n>1$.

metamorphy
  • 39,111
  • 2
    Very interesting how much cancellation occurs across $\mathbb{R}^n$ than just one orthant! – Integrand Aug 03 '20 at 13:29
  • 1
    A very nice solution and a impeccable explanation. Mathematics contains infinite beauty, but one still needs to have the talent to uncover it and to show it properly :) – Svyatoslav Apr 10 '21 at 11:07
  • Sorry I don't get the second equation, could you pls enlighten me where I got wrong? Take $n = 2, a_k = b_k = 1$ as example, the first equation is

    $$\Xi = \int_{(0,\infty)}\int_{(0,\infty)}\frac{e^{-c_1x_1}\sin x_1}{x_1}\frac{e^{-c_2x_2}\sin x_2}{x_2}\frac{\sin (x_1+x_2)}{x_1+x_2}dx_1 dx_2$$

    Substitue with $\sin(x_1+x_2) = \frac{e^{i(x_1+x_2)}-e^{i(x_1+x_2)}}{2i} = \frac{i(x_1+x_2)}{2i} \int_{-1}^1 e^{i(x_1+x_2)t}dt$, one has

    $$\Xi = \frac{1}{2} \int_{-1}^1 \int_{(0,\infty)}\int_{(0,\infty)}e^{(-c_1+it)x_1}\frac{\sin x_1}{x_1}\cdot e^{(-c_2+it)x_2}\frac{\sin x_2}{x_2} dx_1 dx_2 dt$$

    – athos Apr 16 '21 at 22:49
  • Define $$I(c_1):=\int_{(0,\infty)}e^{(-c_1+it)x_1}\frac{\sin x_1}{x_1}dx_1$$ , then $$I(0)=\pi/2$$, and
    $$I'(c_1):=-\int_{(0,\infty)}e^{(-c_1+it)x_1} \sin x_1 dx_1 = \frac{1}{c_1-it}e^{(-c_1+it)x_1} \sin x_1 |0^\infty - \frac{1}{c_1-it}\int{(0,\infty)}e^{(-c_1+it)x_1} \cos x_1 dx_1 = \frac{1}{(-c_1+it)^2} e^{(-c_1+it)x_1} \cos x_1 |0^\infty +\frac{1}{(-c_1+it)^2}\int{(0,\infty)}e^{(-c_1+it)x_1} \sin x_1 d x_1 = -\frac{1}{(-c_1+it)^2} -\frac{1}{(-c_1+it)^2} I'(c_1) $$

    So, $$I'(c_1) = -\frac{1}{(c_1-it)^2+1} = \frac{1}{2i} \left(\frac{1}{c_1-it+i}-\frac{1}{c_1-it-i}\right)$$

    – athos Apr 16 '21 at 22:50
  • Hence $$I(c_1)=I(0)+\int_0^{c_1} I'(c_1)d c_1 =I(0)+\frac{1}{2i} \int_0^{c_1} \left(\frac{1}{c_1-it+i}-\frac{1}{c_1-it-i}\right) d c_1 =\frac{\pi}{2}+\frac{1}{2i} \left.\log \left(\frac{c_1-it+i}{c_1-it-i}\right) \right|_0^{c_1} = \frac{1}{2i} \log \left(\frac{c_1+i(1-t)}{c_1-i(1+t)}\right) +\frac{\pi}{2}-\frac{1}{2i} \log \left(-\frac{1-t}{1+t}\right) = \frac{1}{2i} \log \left(\frac{c_1+i(1-t)}{c_1-i(1+t)}\right) +\frac{1}{2i} \log \left(\frac{1+t}{1-t}\right) $$ – athos Apr 16 '21 at 22:50
  • So instead of your 2nd step equation $$\Xi=\frac12\int_{-1}^1\prod_{k=1}^{n}\left(\frac{1}{2i}\log\frac{c_k+i(a_k-b_k t)}{c_k-i(a_k+b_k t)}\right),dt,$$, I got $$\Xi=\frac12\int_{-1}^1\prod_{k=1}^{n}\left(\frac{1}{2i}\log\frac{c_k+i(a_k-b_k t)}{c_k-i(a_k+b_k t)} + \frac{1}{2i} \log \left(\frac{a_k+b_kt}{a_k-b_kt}\right)\right),dt,$$ – athos Apr 16 '21 at 22:50
  • of course my conclusion is wrong as this leads to $\Xi = (\pi/2)^n$, but I couldn't find where I tumbled... – athos Apr 16 '21 at 23:01
  • 1
    @athos: The mistake is the claim that $I(0)=\pi/2$. Note that we have to interpret $I(0)$ as $\lim\limits_{c_1\to 0^+}I(c_1)$, and we must have $\lim\limits_{c_1\to+\infty}I(c_1)=0$, which doesn't hold with your result. And, finally, here the Frullani approach produces the correct result almost immediately. – metamorphy Apr 17 '21 at 09:24
3

Another way: Firstly let $$f(x)=H(x)\cdot\frac{\sin x}{x}.$$ here $H(x)$ is called Heaviside function. It is defined by $$ H(x)=\left\{\begin{matrix} 0, &\quad x\le0.\\ 1,&\quad x>0. \end{matrix}\right. $$ The fourier transformation of $f(x)$ is $$ \hat{f}(\omega)=\frac{\pi}{2}\text{sgn}^*(\omega)-\frac{i}{2}\ln\left | \frac{1+\omega}{1-\omega} \right |. $$ where $\text{sgn}^*(\omega)=\frac{\text{sgn}(1+\omega)+\text{sgn}(1-\omega)}{2}.$


Here I state an identity. Which is easy to prove. $$\int_{[\mathbb{R}]^n} \prod_{k=1}^{n}f_k(x_k)\cdot g\left(\sum_{k=1}^{n}x_k \right) \prod_{k=1}^{n}\text{d}x_k =\frac{1}{2\pi} \int_{\mathbb{R}}\prod_{k=1}^{n}\hat{f}_k(-\omega) \hat{g}(\omega) \text{d}\omega.\tag{1}$$ where $$\hat{f}(\omega)=\int_{\mathbb{R}} f(x)e^{-i\omega x}\text{d}x.$$


Now let us denote $\mathscr{I}_n$ for OP's integral. And using $(1)$,we immediately obtain $$\begin{aligned} \mathscr{I}_n & = \frac{1}{2\pi} \int_{\mathbb{R}}\left ( \frac{\pi}{2}\text{sgn}^*(\omega)-\frac{i}{2}\ln\left | \frac{1-\omega}{1+\omega} \right | \right )^n \pi\operatorname{sgn}^*(\omega) \text{d}\omega\\ &=\frac{1}{2^{n+1}} \int_{-1}^{1} \left ( \pi-i\ln\left | \frac{1-\omega}{1+\omega} \right | \right ) ^n\text{d}\omega. \end{aligned}$$ or $$ \mathscr{I}_n=\frac{1}{2^{n+1}} \int_{-\infty}^{\infty} \frac{(\pi+2it)^n}{\cosh(t)^2} \text{d}t. $$ Then let $$b(z)=\frac{(\pi i)^nB_{n+1}\left ( \frac{\pi+2iz}{2\pi} \right ) }{n+1}.$$ Where $B_n(z)$ are the Bernoulli polynomials. And integrate $$f(z)=\frac{b(z)}{\cosh^2z}.$$ along a rectangular contour with vertices $\pm\infty,\pm\infty-\pi i$. Hence $$ \begin{aligned} \frac{i^n}{2^n} \int_{-\infty}^{\infty} \frac{(\pi+2iz)^n}{\cosh(z)^2}\text{d}z & = 2\pi i\operatorname{Res}\left ( f(z),z = -\frac{\pi i}{2} \right ) \\ &=2\pi i\cdot\frac{(\pi i)^n}{n+1} \left ( -\frac{i}{\pi} (n+1)B_n(1) \right ) \\ &=2(\pi i)^nB_n(1). \end{aligned} $$ So the result of $\mathscr{I}_n$ is $$\begin{aligned} \mathscr{I}_n &=\frac{1}{2^{n+1}} \frac{2^n}{i^n} \cdot2(\pi i)^nB_n(1)\\ &=\pi^nB_n(1). \end{aligned}$$ Or

We have following result. It holds as $n\ge1$. $$\mathscr{I}_n=(-1)^n\pi^nB_n.$$ Where $B_n$ are the Bernoulli numbers.