Let $A$ be an $n \times n$ orthogonal matrix where $A$ is of even order with $|A|=-1.$ Show that, $|I-A|=0,$ where $I$ denotes the $n \times n$ identity matrix.
My approach
$A \cdot A^{\top}=I$
$|A| \cdot\left|A^{\top}\right|=1 \quad$ or $\quad\left|A^{\top}\right|=-1.....(2)$
let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$L = I-A$
$L=\left[\begin{array}{cc}1-a & -b \\ -c & 1-d\end{array}\right]; \quad 2 a d=2 b c$(from eq2)
$|L|=(1-a)(1-d) - bc$
$=-(a+d)$
What to do next? Am I going wrong?