Evaluate $\displaystyle\sum_{n=1}^{50}n \!\cdot\! n!$
I tried to write the sum like: $1+2\!\cdot\!2!+3\!\cdot\!3!+4\!\cdot\!4!+5\!\cdot\!5!+\ldots=1+4+18+96+600\ldots$
I can find a recursion like $t_{n+1}=t_n(n+2)+n!$ where $t_n=n\!\cdot\!n!$, so:
$1\!\cdot\!3+1=4$
$4\!\cdot\!4+(1\!\cdot\!2)=18$
$18\!\cdot\!5+(1\!\cdot\!2\!\cdot\!3)=96$
$96\!\cdot\!6+(1\!\cdot\!2\!\cdot\!3\!\cdot\!4)=600$
But I'm not sure how to proceed further or if this is the way to do it. Any help is appreciated.