Though in this case it is simpler to substitute the root of the linear polynomial into the quadratic (as in Integrand's answer), it is instructive to explain the general method of solution that you attempted in your question. The stumbling block there concerns how to split & recombine the systems via CRT, so let's closely examine this logic to see how it works generally.
Suppose that $\,p,q,\bar q$ are pair-coprime integers and $\,f,g\,$ are integer coefficient polynomials.
$f(x)\equiv 0\pmod{\!pq}\!\!\overset{\small \rm CRT}\iff \begin{align} f(x)&\equiv 0\pmod{\!p}\iff x\in {\rm r}_p(f) := {\rm roots\ of} \,f\bmod p\\ f(x)&\equiv 0\pmod{\!q}\iff x\in {\rm r}_q(f)\end{align}$
$g(x)\equiv 0\pmod{\!p\bar q}\!\!\overset{\small \rm CRT}\iff \begin{align} g(x)&\equiv 0\pmod{\!p}\iff x\in {\rm r}_p(g)\\ g(x)&\equiv 0\pmod{\!\bar q}\iff x\in {\rm r}_{\bar q}(g)\end{align}$
Therefore $\,x\,$ is a root of both polynomial congruences iff $\,x\,$ satisfies
$$\begin{align}&\bmod p\!:\,\ x\in {\rm r}_p(f)\ \ \& \ \,x\in {\rm r}_p(g)\iff x\in {\rm r}_p(f)\cap {\rm r}_p(g)\\
&\bmod q\!:\,\ x \in {\rm r}_q(f)\\
&\bmod \bar q\!:\ x\in {\rm r}_{\bar q}(g)\end{align}\qquad\qquad\ \ \ $$
By CRT, each choice of a root for each modulus corresponds to a unique root $\!\bmod pq\bar q,\,$ i.e.
$$\begin{align}
x&\equiv r_i\in {\rm r}_p(f)\cap {\rm r}_p(g)\!\!\pmod{\!p}\\
x&\equiv s_j \in {\rm r}_q(f)\ \ \ \,\qquad \pmod{\!q}\\
x&\equiv t_k \in {\rm r}_{\bar q}(g)\qquad\ \ \ \pmod{\!\bar q}\end{align} \iff x\equiv x_{i,j,k}\!\!\!\pmod{\!pq\bar q}\qquad$$
so the number of roots $\!\bmod pq\bar q\,$ is $\,|{\rm r}_p(f)\cap {\rm r}_p(g)|\cdot |{\rm r}_q(f)| \cdot |{\rm r}_{\bar q}(g)|$.
In the OP we have $\,p,q,\bar q = 2,5,11,\,$ so applying the above:
$\!\!\!\begin{align}\bmod 2\!:\ &0\equiv f = x^2\!+2x+2\equiv x^2\!\!\iff\! x\equiv 0\\
&0\equiv g = \,7\,x\,-\,20\,\equiv\, x\,\iff\: x\equiv 0,\ {\rm thus\ we\ have}\ \ {\rm r}_2(f)\cap {\rm r}_2(g) \equiv \{0\}\end{align}$
$\!\!\bmod 5\!:\ 0\equiv f = x^2+2x+2\equiv (x\!-\!1)(x\!-\!2)\!\iff\! x\equiv \color{#0a0}{1,2 =: r},\ \,{\rm so}\,\ {\rm r}_5(f) \equiv \{1,2\}$
$\!\!\bmod 11\!:\ 0\equiv g\equiv 7x-20\iff x\equiv \frac{20}7\equiv \frac{-2}{-4}\equiv \frac{1}2\equiv \frac{12}2\equiv 6,\ \,{\rm thus}\ \ {\rm r}_{11}(g) \equiv \{6\}$
So, as above, by CRT the common roots are precisely the solutions of
$$\begin{align}
x&\equiv 0\!\!\pmod{\!2}\\
x&\equiv r\!\!\pmod{\!5},\ \color{#0a0}{r\in \{1,2\}}\\
x&\equiv 6\!\!\pmod{\!11}\end{align}\qquad$$
Now $\,x\equiv 0\equiv 6\pmod{\!\!2},\,x\equiv 6\pmod{\!\!11}\iff x\equiv 6\pmod{\!\!22}\,$ by CCRT
so $\,x = 6\!+\!22k.\,$ CRT combining this with the remaining congruence mod $5$ yields
$\!\!\bmod\color{#c00} 5\!:\,\ \color{#0a0}r\equiv x\equiv 6\!+\!22k\equiv 1\!+\!2k\iff 2k\equiv r\!-\!1\smash{\overset{\times 3\!}\iff} \color{#c00}{k\equiv 3r\!-\!3}$
So we obtain $\ x = 6+22\color{#c00}k = 6\!+\!22(\color{#c00}{3r\!-\!3+5n}) \equiv 6,72\pmod{\!\!110},\,$ for $\,\color{#0a0}{r = 1,2}$.
$ \begin{cases} x\equiv 1;(mod;5)\ x\equiv 0;(mod;2) \end{cases} $, $ \begin{cases} x\equiv 1;(mod;5)\ x\equiv 6;(mod;11) \end{cases} $, $ \begin{cases} x\equiv 2;(mod;5)\ x\equiv 0;(mod;11) \end{cases} $, $ \begin{cases} x\equiv 2;(mod;5)\ x\equiv 6;(mod;11) \end{cases} $
– Shyvert Apr 15 '20 at 16:32The solutions of $x^2+2x+2\equiv 0;(mod;10)$ are:
$$ \begin{cases} x\equiv 1;(mod;5)\ x\equiv 0;(mod;2)\ \end{cases}\implies x\equiv 6;(mod;10) $$ $$ \begin{cases} x\equiv 2;(mod;5)\ x\equiv 0;(mod;2)\ \end{cases}\implies x\equiv 2;(mod;10) $$
– Shyvert Apr 15 '20 at 17:29