Is there closed form for
$$\sum_{n=1}^\infty\frac{\overline{H}_n}{n^2}x^n\ ?$$
where $\overline{H}_n=\sum_{k=1}^n\frac{(-1)^{k-1}}{k}$ is the alternating harmonic number.
My approach,
In this paper page $95$ Eq $(5)$ we have
$$\sum_{n=1}^\infty \overline{H}_n\frac{x^n}{n}=\operatorname{Li}_2\left(\frac{1-x}{2}\right)-\operatorname{Li}_2(-x)-\ln2\ln(1-x)-\operatorname{Li}_2\left(\frac12\right)$$
Divide both sides by $x$ then integrate we get
$$\sum_{n=1}^\infty\frac{\overline{H}_n}{n^2}x^n=\int\frac{\operatorname{Li}_2\left(\frac{1-x}{2}\right)}{x}\ dx-\operatorname{Li}_3(-x)+\ln2\operatorname{Li}_2(x)-\operatorname{Li}_2\left(\frac12\right)\ln x$$
and my question is how to find the remaining integral? Thanks
Maybe you wonder why I have it as an indefinite integral, I meant so as I am planning to plug $x=0$ to find the constant after we find the closed form of the integral if possible.
I tried Mathematica, it gave
Edit
With help of $Mathematica$ I was able to find
\begin{align} \sum_{n=1}^\infty\frac{\overline{H}_n}{n^2}x^n&=-\frac13\ln^3(2)+\frac12\ln^2(2)\ln(1-x)-\frac12\zeta(2)\ln(x)+\frac32\ln^2(2)\ln(x)\\ &\quad-\ln(2)\ln(x)\ln(1-x)-\frac12\ln(2)\ln^2(x)-\frac12\ln^2(2)\ln(1-x)\\ &\quad-\ln^2(2)\left(\frac{x}{1+x}\right)+\ln(2)\ln\left(\frac{x}{1+x}\right)[\ln(1-x)+\ln(x)]\\ &\quad+\ln(x)\ln(1-x)\ln(1+x)+\ln(x)\operatorname{Li}_2\left(\frac{1-x}{2}\right)+\ln\left(\frac{x}{1+x}\right)\operatorname{Li}_2(x)\\ &\quad+\ln(1+x)\operatorname{Li}_2(x)+\operatorname{Li}_2\left(\frac{x}{1+x}\right)\ln\left(\frac{2x}{1+x}\right)-\operatorname{Li}_2\left(\frac{2x}{1+x}\right)\ln\left(\frac{2x}{1+x}\right)\\ &\quad+\operatorname{Li}_2\left(\frac{1+x}{2}\right)\ln\left(\frac{x}{2}\right)-\ln\left(\frac{x}{1+x}\right)\operatorname{Li}_2\left(\frac{1+x}{2}\right)-\operatorname{Li}_3(x)-\operatorname{Li}_3\left(\frac{x}{1+x}\right)\\ &\quad+\operatorname{Li}_3\left(\frac{2x}{1+x}\right)-\operatorname{Li}_3\left(\frac{1+x}{2}\right)-\operatorname{Li}_3(-x)+\ln(2)\operatorname{Li}_2(x)+\frac{7}{8}\zeta(3) \end{align}