Let $\{B_t:t\geq0\}$ be a $d$-dimensional Brownian motion. $D\in\mathbb{R}^d$ is a bouded open set, $\sigma:=\inf\{t\geq0:B_t\in\partial D\}$.
I want to prove that $\mathrm{P}_x(\sigma<\infty)=1$. My proof is correct?
To prove this, it is enough to show $\mathrm{P}_x(\tau<\infty)=1$. $\tau:=\inf\{t\geq0:B_t\notin\mathcal{B}(x,R)\}$, $\mathcal{B}(x,R)$ is a open ball which contain $D$. \begin{align} \mathrm{P}(\tau=\infty)&=\mathrm{P}({}^\forall t\geq0, B_t\in\mathcal{B}(x,R))\\ &\leq \mathrm{P}(B_t\in\mathcal{B}(x,R))\\ &=\int_{|y|\leq R}\frac{1}{\sqrt[d]{2\pi t}}e^{-|y-x|^2/2t}dy. \end{align} By changing of variable $z_i=\frac{y_i-x_i}{\sqrt{t}}$, \begin{align} \mathrm{P}(\tau=\infty) &\leq\int_{|\sqrt{t}z+x|\leq R}\frac{1}{\sqrt[d]{2\pi}}e^{-|z|^2/2}dz\\ &=\int_{\mathbb{R}^d}{\bf 1}_{|\sqrt{t}z+x|\leq R}\frac{1}{\sqrt[d]{2\pi}}e^{-|z|^2/2}dz. \end{align} Because of $\int_{\mathbb{R}^d}\frac{1}{\sqrt[d]{2\pi}}e^{-|z|^2/2}dz<\infty$ and $t$ is arbitrary, we can use dominated convergence theorem as $t\to\infty$. Therefore, $\mathrm{P}(\tau=\infty)=0$, this completes proof.
Thank you for your cooperation.