Half of the Dirichlet Kernel
$$\newcommand{\Re}{\operatorname{Re}}
\begin{align}
\sum_{n=1}^N\cos(nx)
&=\Re\left(\sum_{n=1}^Ne^{inx}\right)\tag1\\
&=\Re\left(\frac{e^{ix}-e^{i(N+1)x}}{1-e^{ix}}\right)\tag2\\
&=\frac{\Re\left(e^{ix}-1-e^{i(N+1)x}+e^{iNx}\right)}{2-2\cos(x)}\tag3\\
&=-\frac12+\frac{\cos(Nx)-\cos((N+1)x)}{2-2\cos(x)}\tag4\\
&=\frac{\sin\left(\left(N+\frac12\right)x\right)}{2\sin\left(\frac12x\right)}-\frac12\tag5
\end{align}
$$
Explanation:
$(1)$: $\cos(x)=\Re\left(e^{ix}\right)$
$(2)$: sum of a geometric series
$(3)$: multiply by $\frac{1-e^{-ix}}{1-e^{-ix}}$
$(4)$: $\cos(x)=\Re\left(e^{ix}\right)$
$(5)$: $\cos(Nx)-\cos((N+1)x)=2\sin\left(\left(N+\frac12\right)x\right)\sin\left(\frac12x\right)$
Note that $(5)$ also follows from the Dirichlet Kernel:
$$
\sum_{n=-N}^N\cos(nx)=\frac{\sin\left(\left(N+\frac12\right)x\right)}{\sin\left(\frac12x\right)}\tag6
$$
Application to the Limit
If $\sin\left(\frac12x\right)\ne0$, then, since $\left|\sin\left(\left(N+\frac12\right)x\right)\right|\le1$,
$$
\begin{align}
\lim_{N\to\infty}\frac1{N\left(x^2+1\right)}\sum_{n=1}^N\cos(nx)
&=\lim_{N\to\infty}\frac1{N\left(x^2+1\right)}\left(\frac{\sin\left(\left(N+\frac12\right)x\right)}{2\sin\left(\frac12x\right)}-\frac12\right)\\[6pt]
&=0\tag6
\end{align}
$$
If $\sin\left(\frac12x\right)=0$, then $x=2\pi k$ for some $k\in\mathbb{Z}$; and thus, $\cos(nx)=1$. Therefore,
$$
\begin{align}
\lim_{N\to\infty}\frac1{N\left(x^2+1\right)}\sum_{n=1}^N\cos(nx)
&=\lim_{N\to\infty}\frac1{N\left(x^2+1\right)}\,N\\[6pt]
&=\frac1{x^2+1}\tag7
\end{align}
$$