I know a proof of the first and of the third of the following equalities. I am looking for a proof of the second equality.
$\sum\limits_{i=0}^{n} \;(-1)^{n - i} \cdot \binom{n}i = 0$
$\sum\limits_{i=0}^{n} \;(-1)^{n - i} \cdot \binom{n}i \cdot i^k = 0$ for $k$ with $0 < k < n$
$\sum\limits_{i=0}^{n} \;(-1)^{n - i} \cdot \binom{n}i \cdot i^n = n!$