Not quite simple, but this approach works here. Let $a=2u/w$ and $b=v/w$ with positive integers $u,v,w$.
Denoting $\zeta=e^{2\pi i/w}$, we have $2(\zeta^u+\zeta^{-u})=2+\zeta^v+\zeta^{-v}$. This is a polynomial equation w.r.t. $\zeta$, hence $$2(\zeta^{au}+\zeta^{-au})=2+\zeta^{av}+\zeta^{-av},\qquad 1\leqslant a\leqslant w,\ \gcd(a,w)=1$$ by the same "cyclotomic argument" as in the linked answer. Likewise, we sum over $a$ and use $$\frac{1}{\varphi(w)}\sum_{\substack{1\leqslant a\leqslant w\\\gcd(a,w)=1}}\zeta^{an}=\rho(d):=\frac{\mu(d)}{\varphi(d)},\qquad d=\frac{w}{\gcd(n,w)};$$
so, denoting $x=w/\gcd(u,w)$ and $y=w/\gcd(v,w)$, we get $\color{blue}{2\rho(x)=1+\rho(y)}$.
Examining the range of $\rho$, we see that this is possible only in the following cases:
- $\rho(x)=\rho(y)=1$. Thus, $x=y=1$ and $a/2,b\in\mathbb{N}$, out of range.
- $\rho(x)=1/2$ and $\rho(y)=0$. Thus, $x=6$ and $$a=\frac{2u}{w}=\frac{2}{x}\frac{u}{\gcd(u,w)}\in\frac{1}{3}\mathbb{N}\implies a=\frac{1}{3};$$ and we find the solution $(1/3,1/4)$ you know.
- $\rho(x)=1/4$ and $\rho(y)=-1/2$. This time $y=3$ and $b=1/3$, with no solution.
- $\rho(x)=0$ and $\rho(y)=-1$. Thus, $y=2$, leading to $a=b=1/2$.