I am trying to generalize the fact that, for $k>\frac12$,
$$\sum_{m\geq1}\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin(n/m^{2k})=\frac1{12}\zeta(6k)-\frac{\pi^2}{12}\zeta(2k)$$
To reach this I start off with the Fourier series
$$ t^2=\frac{\pi^2}3+4\sum_{n\geq1}\frac{(-1)^n}{n^2}\cos(nt),\qquad |t|\leq\pi\\ \sum_{n\geq1}\frac{(-1)^n}{n^2}\cos(nt)=\frac{t^2}4-\frac{\pi^2}{12} $$
integrate both sides from $0$ to $x$: $$ \sum_{n\geq1}\frac{(-1)^n}{n^2}\int_0^x\cos(nt)dt=\frac{x^3}{12}-\frac{\pi^2x}{12}\\ \sum_{n\geq1}\frac{(-1)^n}{n^3}\sin(nx)=\frac{x^3}{12}-\frac{\pi^2x}{12} $$ plugging in $x=m^{-2k}$ for $m\geq1$, and $k>1/2$, $$\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin(n/m^{2k})=\frac1{12m^{6k}}-\frac{\pi^2}{12m^{2k}}$$ Then applying $\sum\limits_{m\geq1}$ on both sides, $$\sum_{m\geq1}\sum_{n\geq1}\frac{(-1)^n}{n^3}\sin(n/m^{2k})=\frac1{12}\zeta(6k)-\frac{\pi^2}{12}\zeta(2k)$$ With the same process, we have
$$\begin{align} \sum_{m\geq1}\sum_{n\geq1}\frac{(-1)^n}{n^5}\sin(n/m^{2k})&=\frac{\pi^2}{72}\zeta(6k)-\frac1{240}\zeta(10k)-\frac{7\pi^4}{720}\zeta(2k)\\ \end{align}$$ I am trying to find a general form in terms of $\zeta$ values of $$\begin{align} S_j(k)&=\sum_{m\geq1}\sum_{n\geq1}\frac{(-1)^n}{n^j}\sin(n/m^{2k}),\qquad \text{j is odd},\quad j>0\\ \end{align}$$ And as you've seen, I've found up to $j=5$, but I would like to know if a general form exists. Any help is appreciated.