Lemma $\ \ (f(n\!+\!1),f(n))\, =\, (n-2a,4a+1)\,\ $ for $\ f(n) = n^2+a\ \ $ [OP is $\,a = 3]$
$\begin{align}{\bf Proof}\ \ \ \ (f(n\!+\!1),f(n)) &\,=\, (2n+1,\,f(n))\ \ \ \ \ \ \:\! {\rm by\ \ } 2n\!+\!1 = f(n\!+\!1)-f(n)\ \ \rm and\ Euclid\\[.2em]
&\,=\, (\color{#c00}2n+1,\,4a+1) \ \ \ {\rm by}\ \ f(\color{#0a0}n) \equiv 4f(\color{#0a0}{\tfrac{\!-\!1}2})\equiv 4a\!+\!1\!\!\!\pmod{\color{#0a0}{n\equiv \tfrac{\!\!-1}2}}\\[.2em]
&\,=\, (n-2a,\, 4a+1)\ \ \ {\rm via\ scale\ by}\ \ \color{#c00}{2^{-1}}\equiv -2a\!\!\!\!\underbrace{({\rm mod}\,\ {4a\!+\!1})}_{\textstyle 1\equiv -4a\equiv \color{#c00}2(-2a)}
\end{align}$
where the $\rm\color{#0a0}{fractional}$ evaluation follows by this Theorem.
Remark $ $ See here for a more general way to do what we did above by evaluation at fractions - by instead scaling by leading coef's coprime to the gcd (which preserves the gcd), e.g. above by $(2,2n\!+\!1)=1$ we can scale $\,n^2+a\,$ by $\,2\,$ to get $\,(\color{#c00}{2n})n+2a\equiv (\color{#c00}{-1})n+2a\pmod{\!\color{#c00}{2n+1}}\,$ so $\,(2n+1,n^2+a) = (2\color{#0a0}n+1,\color{#0a0}{n-2a})= (2(\color{#0a0}{2a})+1,n-2a)\,$ by $\,\color{#0a0}{n\equiv 2a\pmod{n-2a}}\,$ using gcd mod reduction (congruence form of reduction step of Euclidean algorithm)