$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{I \equiv
\int_{0}^{\infty}\ln^{2}\pars{x}
\ln\pars{1 + x}\ln^{2}\pars{1 + {1 \over x}}
\,{\dd x \over x} =
{\pi^{6} \over 60} + 6\,\zeta^{2}\pars{3}:\ {\LARGE ?}}$.
\begin{align}
I & \equiv
\bbox[10px,#ffd]{\int_{0}^{\infty}\ln^{2}\pars{x}
\ln\pars{1 + x}\ln^{2}\pars{1 + {1 \over x}}
\,{\dd x \over x}}
\\[5mm] & =
\int_{0}^{\infty}\ln^{2}\pars{x}
\ln\pars{1 + x}
\bracks{\ln\pars{1 + x} - \ln\pars{x}}^{\, 2}
\,{\dd x \over x}
\\[5mm] & =
\int_{1}^{\infty}\ln^{2}\pars{x - 1}
\ln\pars{x}
\bracks{\ln\pars{x} - \ln\pars{x - 1}}^{\, 2}
\,{\dd x \over x - 1}
\\[5mm] & =
\int_{1}^{0}\ln^{2}\pars{{1 \over x} - 1}
\ln\pars{1 \over x}
\bracks{\ln\pars{1 \over x} -
\ln\pars{{1 \over x} - 1}}^{\, 2}\
\,{-\dd x/x^{2} \over 1/x - 1}
\\[5mm] & =
-\int_{0}^{1}
{\bracks{\ln\pars{1 - x} - \ln\pars{x}}^{\, 2}
\ln\pars{x}\ln^{2}\pars{1 - x} \over x\pars{1 - x}}\,\dd x
\\[8mm] & =
-\int_{0}^{1}
{\ln\pars{x}\ln^{4}\pars{1 - x} \over x\pars{1 - x}}
\,\dd x +
2\int_{0}^{1}
{\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x\pars{1 - x}}
\,\dd x
\\[2mm] & -
\int_{0}^{1}{\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over
x\pars{1 - x}}\,\dd x
\\[8mm] & =
-\int_{0}^{1}
{\ln\pars{x}\ln^{4}\pars{1 - x} \over x}\,\dd x -\int_{0}^{1}
{\ln^{4}\pars{x}\ln\pars{1 - x} \over x}\,\dd x
\\[2mm] & +
2\int_{0}^{1}
{\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x}\,\dd x +
2\int_{0}^{1}
{\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x}\,\dd x
\\[2mm] & -
\int_{0}^{1}{\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over
x}\,\dd x -
\int_{0}^{1}{\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over
x}\,\dd x
\\[8mm] & =
-\int_{0}^{1}
{\ln^{4}\pars{x}\ln\pars{1 - x} \over x}\,\dd x +
\int_{0}^{1}
{\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x}\,\dd x
\\[2mm] & +
\int_{0}^{1}
{\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x}\,\dd x -\int_{0}^{1}
{\ln\pars{x}\ln^{4}\pars{1 - x} \over x}\,\dd x
\end{align}
The above integrals are related to derivatives, respect $\ds{\mu}$ and $\ds{\nu}$ with
$\ds{\pars{\mu,\nu} \to \pars{0^{+},0}}$, of
\begin{align}
\mc{I}\pars{\mu,\nu} & \equiv
\int_{0}^{1}{x^{\mu}\bracks{\pars{1 - x}^{\nu} - 1} \over x}\,\dd x
\\[5mm] & =
\int_{0}^{1}x^{\mu - 1}\pars{1 - x}^{\nu}\,\dd x -
\int_{0}^{1}x^{\mu - 1}\,\dd x =
{\Gamma\pars{\mu}\Gamma\pars{\nu + 1} \over \Gamma\pars{\mu + \nu + 1}} - {1 \over \mu}
\\[5mm] & =
{1 \over \mu}\bracks{{\Gamma\pars{\mu + 1}\Gamma\pars{\nu + 1} \over \Gamma\pars{\mu + \nu + 1}} - 1}
\end{align}
as
$$
\int_{0}^{1}{\ln^{m}\pars{x}\ln^{n}\pars{1 - x} \over x} \, \dd x =
\lim_{{\large\mu \to 0^{+}} \atop {\large\nu \to 0}}{\partial^{m + n}\mc{I}\pars{\mu,\nu} \over \partial\mu^{m}\,\partial\nu^{n}}
$$
$$
\left\{\begin{array}{rcl}
\ds{-\int_{0}^{1}
{\ln^{4}\pars{x}\ln\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{\phantom{-}{8\pi^{6} \over 315}}
\\[2mm]
\ds{\int_{0}^{1}
{\ln^{3}\pars{x}\ln^{2}\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{-\,{\pi^{6} \over 105} + 6\,\zeta^{2}\pars{3}}
\\[2mm]
\ds{\int_{0}^{1}
{\ln^{2}\pars{x}\ln^{3}\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{-\,{23\pi^{6} \over 1260} + 12\,\zeta^{2}\pars{3}}
\\[2mm]
\ds{-\int_{0}^{1}
{\ln\pars{x}\ln^{4}\pars{1 - x} \over x}\,\dd x} & \ds{=} & \ds{\phantom{-}{2\pi^{6} \over 105} - 12\,\zeta^{2}\pars{3}}
\end{array}\right.
$$
Note that
$\ds{{8\pi^{6} \over 315} +
\bracks{-\,{\pi^{6} \over 105} + 6\,\zeta^{2}\pars{3}} +
\bracks{-\,{23\pi^{6} \over 1260} + 12\,\zeta^{2}\pars{3}} +
\bracks{{2\pi^{6} \over 105} - 12\,\zeta^{2}\pars{3}} =
\bbx{{\pi^{6} \over 60} + 6\,\zeta^{2}\pars{3}}}$
which is the final answer.