I am seeking a closed form for the function $$f(x)=\,_3F_2\left(\tfrac12,\tfrac12,\tfrac12;\tfrac32,\tfrac32;x\right)$$
I expect there to be one, because of this post and Wolfram. The Wolfram link produces closed forms involving $\mathrm{Li}_2$ for any value of $x$ that I've tried so far, so I can only assume that a general closed form exists.
I've started my attempts by noticing that $$f(x)=\frac12\int_0^1 \frac{_2F_1(\tfrac12,\tfrac12;\tfrac32;xt)}{\sqrt{t}}dt,$$ because $$\frac12\int_0^1 \frac{(xt)^n}{\sqrt{t}}dt=\frac{x^n}{2n+1}$$ which would introduce another factor of $$\frac{n+1/2}{n+3/2}$$ when computing the ratio of the terms. Similarly, $$_2F_1\left(\tfrac12,\tfrac12;\tfrac32;x\right)=\frac12\int_0^1 \frac{_1F_0(\tfrac12;;xt)}{\sqrt{t}}dt.$$
The last hypergeometric I was able to recognize as $$_1F_0\left(\tfrac12;;xt\right)=\frac1{\sqrt{1-xt}}.$$ So, all in all, $$f(x)=\frac14\int_0^1\int_0^1 \frac{1}{\sqrt{vu}\sqrt{1-xvu}}dvdu,$$ which looks like the Beta function's evil cousin.
I do not know how to turn this integral into something containing $\mathrm{Li}_2$ and I need some help. Thanks!