Find: $$I=\int_0^{1}\frac{(1+x^2)\ln(1+x^4)}{1+x^4}\,dx$$
I need to use the definition of do Trigamma function but I don't see how.
My try was as following :
Let $y=x^4$ then $dy=4x^{3}\,dx$ so $\;dx=\frac{dy}{4y^{\frac{3}{4}}}$.
$$I=\int_0^{1}\frac{(1+x^{\frac{3}{4}})\ln(1+x)}{x^{\frac{3}{4}}+x^{\frac{7}{4}}}dx$$
Use : $\ln(1+x)=-\sum_{n=1}^{\infty}\frac{(-1)^{n}x^n}{n}$
We obtain
$$J=\int_0^{1}\frac{x^n+x^{(3+4n)/4}}{x^{3/4}+x^{7/4}}dx$$
Then I use definition of digamma function
$$\int_0^{1}\frac{x^{a-1}\ln x}{1+x}\,dx=\beta'(a)$$
Where: $$2\beta(a)=\psi\left(\frac{1+a}{2}\right)-\psi\left(\frac{a}{2}\right)$$
But I find sum related with digamma function.
So I don't have other ideas to approach it!
-Derivative[0, 1, 0, 0][Hypergeometric2F1][1/4, 1, 5/4, -1] - Derivative[0, 1, 0, 0][Hypergeometric2F1][3/4, 1, 7/4, -1]/3
– Mariusz Iwaniuk Jul 01 '19 at 12:31D[Integrate[(1 + x^2)/(1 + x^4)*(1 + x^4)^t, {x, 0, 1}, Assumptions -> t >= 0], t] /. t -> 0
– Mariusz Iwaniuk Jul 01 '19 at 12:35