The subject is better caught using a matricial reperesentation, and
it is preferrable to index from $0$, as it provides a neater handling of the sums and products.
Given an assigned sequence $\left\{ {t_{\,0} ,t_{\,1} , \cdots ,t_{\,h} , \cdots } \right\}\quad \left| {\;t_{\,k} \ne t_{\,j} } \right.$,
let's indicate by $\pi _{\,n} (t)$ the $n$-th degree polynomial
$$
\pi _{\,n} (x,{\bf t}) = \prod\limits_{0\, \le \,j\, \le \,n-1} {\left( {x - t_{\,j} } \right)}
$$
so that, with the convention of the null product, we have
$$
\pi _{\,0} (x,{\bf t}) = 1\quad \pi _{\,1} (x,{\bf t}) = \left( {x - t_{\,0} } \right)\quad \cdots
$$
We want to construct a polynomial of degree $h$ such that at the $h+1$ points $(t_0, \cdots,t_h)$
it takes the values $(f_0, \cdots,f_h)$, that is
$$
p_{\,h} \left( {x,{\bf t},{\bf f}} \right)\;:\;\;p_{\,h} \left( {t_{\,k} ,{\bf t},{\bf f}} \right) = f_{\,k} \quad \left| {\,0 \le k \le h} \right.
$$
While we could express it in terms of Lagrange polynomials, we want instead
to express it as a linear combination of the $\pi _{\,k} (x,{\bf t})$ polynomials
$$
\eqalign{
& p_{\,h} \left( {x,{\bf t},{\bf f}} \right) = \left( {\matrix{
{\pi _{\,0} (x,{\bf t})} & {\pi _{\,1} (x,{\bf t})} & \cdots & {\pi _{\,h} (x,{\bf t})} \cr
} } \right)\left( {\matrix{ {\beta _{\,0} } \cr {\beta _{\,1} } \cr \vdots \cr {\beta _{\,h} } \cr } } \right) = \cr
& = \overline {{\bf \pi }_{\,h} } (x,{\bf t})\;{\bf \beta }_{\,h} \cr}
$$
note that the vector ${\bf \pi }$ includes polynomials of varying degree.
Since the above holds for whichever value of $x$, it shall hold in particular for each $x=t_k$,
and we get the LT matrix equation you already know
$$ \bbox[lightyellow] {
\eqalign{
& \left( {\matrix{ {f_{\,0} } \cr {f_{\,1} } \cr \vdots \cr {f_{\,h} } \cr } } \right)
= \left( {\matrix{
1 & 0 & \cdots & 0 \cr
1 & {\left( {t_1 - t_0 } \right)} & \cdots & 0 \cr
\vdots & \vdots & \ddots & \vdots \cr
1 & {\prod\limits_{0\, \le \,j\, \le \,0} {\left( {t_h - t_{\,j} } \right)} } & \cdots & {\prod\limits_{0\, \le \,j\, \le \,h - 1} {\left( {t_h - t_{\,j} } \right)} } \cr
} } \right)\left( {\matrix{ {\beta _{\,0} } \cr {\beta _{\,1} } \cr \vdots \cr {\beta _{\,h} } \cr } } \right) = \cr
& = {\bf f} = {\bf P}({\bf t})\;{\bf \beta } \cr}
}\tag{1}$$
Consider now that the Divided Difference of a sequence $y_k$ wrt $x_k$
$$
\left\{ \matrix{
\left[ {y_{\,q} } \right] = y_{\,q} \hfill \cr
\left[ {y_{\,q} ,\, \ldots ,\,y_{\,q + n} } \right]
= {{\left[ {y_{\,q + 1} ,\, \ldots ,\,y_{\,q + n} } \right] - \left[ {y_{\,q} ,\, \ldots ,\,y_{\,q + n - 1} } \right]} \over {x_{\,q + n} - x_{\,q} }} \hfill \cr} \right.
$$
can be expressed as a linear combination of the $y_k$ values as follows
$$ \bbox[lightyellow] {
\left[ {y_{\,q} ,\, \ldots ,\,y_{\,q + n} } \right]
= \sum\limits_{0\, \le \,m\, \le \,n} {{{y_{m + q} } \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m + q} - x_{\,k + q} } \right)} }}}
}\tag{2}$$
because in fact, taking $q=0$ wlog, it is
$$
\eqalign{
& \left[ {y_{\,1} ,\, \ldots ,\,y_{\,n + 1} } \right] - \left[ {y_{\,0} ,\, \ldots ,\,y_{\,n} } \right] = \cr
& = \sum\limits_{0\, \le \,m\, \le \,n} {{{y_{m + 1} } \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m + 1} - x_{\,k + 1} } \right)} }}}
- \sum\limits_{0\, \le \,m\, \le \,n} {{{y_m } \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \sum\limits_{1\, \le \,m + 1\, \le \,n + 1} {{{y_{m + 1} } \over {\prod\limits_{1\, \le \,k + 1\, \ne \,m + 1\, \le \,n + 1} {\left( {x_{\,m + 1}
- x_{\,k + 1} } \right)} }}} - \sum\limits_{0\, \le \,m\, \le \,n} {{{y_m }
\over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \sum\limits_{1\, \le \,m\, \le \,n + 1} {{{y_m } \over {\prod\limits_{1\, \le \,k\, \ne \,m\, \le \,n + 1} {\left( {x_{\,m} - x_{\,k} } \right)} }}}
- \sum\limits_{0\, \le \,m\, \le \,n} {{{y_m } \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \sum\limits_{1\, \le \,m\, \le \,n} {{{y_m } \over {\prod\limits_{1\, \le \,k\, \ne \,m\, \le \,n + 1} {\left( {x_{\,m} - x_{\,k} } \right)} }}}
+ {{y_{n + 1} } \over {\prod\limits_{1\, \le \,k\, \le \,n} {\left( {x_{\,n + 1} - x_{\,k} } \right)} }}
- {{y_0 } \over {\prod\limits_{1\, \le \,k\, \le \,n} {\left( {x_{\,0} - x_{\,k} } \right)} }}
- \sum\limits_{1\, \le \,m\, \le \,n} {{{y_m } \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = - {{y_0 } \over {\prod\limits_{1\, \le \,k\, \le \,n} {\left( {x_{\,0} - x_{\,k} } \right)} }}
+ \sum\limits_{1\, \le \,m\, \le \,n} {y_m \left( {{1 \over {\prod\limits_{1\, \le \,k\, \ne \,m\, \le \,n + 1} {\left( {x_{\,m} - x_{\,k} } \right)} }}
- {1 \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} \right)}
+ {{y_{n + 1} } \over {\prod\limits_{1\, \le \,k\, \le \,n} {\left( {x_{\,n + 1} - x_{\,k} } \right)} }} = \cr
& = - {{\left( {x_{\,0} - x_{\,n + 1} } \right)y_0 } \over {\prod\limits_{1\, \le \,k\, \le \,n + 1} {\left( {x_{\,0} - x_{\,k} } \right)} }}
+ \sum\limits_{1\, \le \,m\, \le \,n} {y_m \left( {{{\left( {x_{\,m} - x_{\,0} } \right)} \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n + 1}
{\left( {x_{\,m} - x_{\,k} } \right)} }} - {{\left( {x_{\,m} - x_{\,n + 1} } \right)} \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n + 1} {\left( {x_{\,m}
- x_{\,k} } \right)} }}} \right)} + {{\left( {x_{\,n + 1} - x_{\,0} } \right)y_{n + 1} } \over {\prod\limits_{0\, \le \,k\, \le \,n}
{\left( {x_{\,n + 1} - x_{\,k} } \right)} }} = \cr
& = \left( {x_{\,n + 1} - x_{\,0} } \right)\sum\limits_{0\, \le \,m\, \le \,n + 1} {{{y_m } \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n + 1}
{\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \left( {x_{\,n + 1} - x_{\,0} } \right)\left[ {y_{\,0} ,\, \ldots ,\,y_{\,n + 1} } \right] \cr}
$$
Therefore, in matrix notation we will have
$$ \bbox[lightyellow] {
\eqalign{ & \left( {\matrix{ {\left[ {f_{\,0} } \right]} \cr {\left[ {f_{\,0} ,f_{\,1} } \right]} \cr \vdots \cr {\left[ {f_{\,0} , \ldots ,f_{\,h} } \right]}
\cr } } \right)
= \left( {\matrix{
1 & 0 & \cdots & 0 \cr
{{1 \over {\left( {t_{\,0} - t_{\,1} } \right)}}} & {{1 \over {\left( {t_{\,1} - t_{\,0} } \right)}}} & \cdots & 0 \cr
\vdots & \vdots & \ddots & \vdots \cr
{{1 \over {\prod\limits_{0\, \le \,k\, \ne \,0\, \le \,h} {\left( {t_{\,0} - t_{\,k} } \right)} }}} & {{1 \over {\prod\limits_{0\, \le \,k\, \ne \,1\, \le \,h}
{\left( {t_{\,1} - t_{\,k} } \right)} }}} & \cdots & {{1 \over {\prod\limits_{0\, \le \,k\, \ne \,h\, \le \,h} {\left( {t_{\,h} - t_{\,k} } \right)} }}} \cr } } \right)
\left( {\matrix{ {f_{\,0} } \cr {f_{\,1} } \cr \vdots \cr {f_{\,h} } \cr } } \right) = \cr
& = {\bf D}_{\,{\bf div}} ({\bf t})\;{\bf f} \cr}
}\tag{3}$$
The crucial point is that
$$ \bbox[lightyellow] {
{\bf D}_{\,{\bf div}} ({\bf t}) = {\bf P}({\bf t})^{\, - \,{\bf 1}}
}\tag{4}$$
which in connection with (1) demonstrates the thesis.
In fact
$$
\eqalign{
& \left[ {y_{\,0} ,\, \ldots ,\,y_{\,n} } \right]\quad \left| {\;y = f(x) = \prod\limits_{0\, \le \,j\, \le \,g - 1} {\left( {x - x_{\,j} } \right)} } \right.\quad = \cr
& = \sum\limits_{0\, \le \,m\, \le \,n} {{{f\left( {x_m } \right)} \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \left[ {g \le n} \right]\sum\limits_{g\, \le \,m\, \le \,n} {{{f\left( {x_m } \right)}
\over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \left[ {g \le n} \right]\sum\limits_{g\, \le \,m\, \le \,n} {{{\prod\limits_{0\, \le \,j\, \le \,g - 1} {\left( {x_{\,m} - x_{\,j} } \right)} }
\over {\prod\limits_{0\, \le \,k\,\, \le \,g - 1} {\left( {x_{\,m} - x_{\,k} } \right)}
\prod\limits_{g\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \left[ {g \le n} \right]\sum\limits_{g\, \le \,m\, \le \,n} {{1 \over {\prod\limits_{g\, \le \,k\, \ne \,m\, \le \,n} {\left( {x_{\,m} - x_{\,k} } \right)} }}} = \cr
& = \left[ {g \le n} \right]\sum\limits_{0\, \le \,m\, \le \,n - g} {{1 \over {\prod\limits_{0\, \le \,k\, \ne \,m\, \le \,n - g}
{\left( {x_{\,m + g} - x_{\,k + g} } \right)} }}} = \cr
& = \left[ {g \le n} \right]\left[ {1_{\,g} ,\, \ldots ,\,1_{\,g + \left( {n - g} \right)} } \right] = \left[ {g = n} \right] \cr}
$$
where the second step follows from being $f(x_m)=0$ for $m<g$
and where $[g \le n],\,[g = n]$ denotes the Iverson bracket.