Just to verify oen's post (since there is a post with a different answer), I will post the answer I got.
$|\sin(z)|\le e^{|\mathrm{Im}(z)|}$; therefore, on the strip $|\mathrm{Im}(z)|\le1$, we have $|\sin(z)|\le e$. Thus, $\left(\frac{\sin(z)}{z}\right)^n$ vanishes as $|z|\to\infty$ in that strip and therefore,
$$
\int_{-\infty}^\infty\left(\frac{\sin(z)}{z}\right)^n\mathrm{d}z
=\int_{-\infty-i}^{\infty-i}\left(\frac{\sin(z)}{z}\right)^n\mathrm{d}z\tag{1}
$$
Next define two contours $\gamma^+$ and $\gamma^-$. $\gamma^+$ goes from $-R-i$ to $R-i$ then circles back through the upper half plane along $|z+i|=R$. $\gamma^-$ goes from $-R-i$ to $R-i$ then circles back through the lower half plane along $|z+i|=R$.
Using the binomial theorem, we get
$$
\left(\frac{\sin(z)}{z}\right)^n=\frac1{(2iz)^n}\sum_{k=0}^n(-1)^k\binom{n}{k}e^{(n-2k)iz}\tag{2}
$$
Integrate the terms where $n-2k\ge0$ along $\gamma^+$ and the others along $\gamma^-$. Since $\gamma^-$ doesn't enclose any singularities, we can ignore that integral. Therefore,
$$
\begin{align}
\int_0^\infty\left(\frac{\sin(z)}{z}\right)^n\mathrm{d}z
&=\frac12\int_{\gamma^+}\frac1{(2iz)^n}\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k\binom{n}{k}e^{(n-2k)iz}\mathrm{d}z\\
&=\frac{\pi i}{(2i)^n}\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k\binom{n}{k}\mathrm{Res}\left(\frac{e^{(n-2k)iz}}{z^n},0\right)\\
&=\frac{\pi i}{(2i)^n}\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k\binom{n}{k}\frac{(n-2k)^{n-1}i^{n-1}}{(n-1)!}\\
&=\frac{\pi}{2^n(n-1)!}\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k\binom{n}{k}(n-2k)^{n-1}\tag{3}
\end{align}
$$