Here is one possible approach.
Enforcing a substitution of $x \mapsto 1/x$ to begin with gives
\begin{align}
\int_1^{1 + \sqrt{2}} \frac{\ln x}{x^2 - 1} \, dx &= -\int_{\sqrt{2}-1}^1 \frac{\ln x}{1 - x^2} \, dx = -\sum_{n = 0}^\infty \int_{\sqrt{2} - 1}^1 x^{2n} \ln x \, dx,
\end{align}
where we have taken advantage of the geometric sum for $1/(1 - x^2)$.
Integrating by parts then leads to
\begin{align}
\int_1^{1 + \sqrt{2}} \frac{\ln x}{x^2 - 1} \, dx &= - \ln (1 + \sqrt{2}) \sum_{n = 0}^\infty \frac{(\sqrt{2} - 1)^{2n + 1}}{2n+1} + \sum_{n = 0}^\infty \frac{1}{(2n + 1)^2}\\
&\qquad - \sum_{n = 0}^\infty \frac{(\sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2}. \tag1
\end{align}
Observing that
$$\tanh^{-1} z = \sum_{n = 0}^\infty \frac{z^{2n + 1}}{2n + 1}, \qquad |z| < 1, \qquad (*)$$
the first of the sums appearing in (1) can be expressed as
$$\sum_{n = 0}^\infty \frac{(\sqrt{2} - 1)^{2n + 1}}{2n+1} = \tanh^{-1} (\sqrt{2} - 1) = \frac{1}{2} \ln (1 + \sqrt{2}).$$
To find the second and third sums in (1), divide ($*$) by $x$ before integrating up from $0$ to $x$. Thus
\begin{align}
\sum_{n = 0}^\infty \frac{1}{2n + 1} \int_0^x t^{2n} \, dt &= \int_0^x \frac{\tanh^{-1} t}{t} \, dt\\
\sum_{n = 0}^\infty \frac{x^{2n + 1}}{(2n + 1)^2} &= \frac{1}{2} \int_0^x \ln \left (\frac{1 + t}{1 - t} \right ) \frac{dt}{t}\\
&= \frac{1}{2} \int_0^{-x} \frac{\ln (1 - t)}{t} \, dt - \frac{1}{2} \int_0^x \frac{\ln (1 - t)}{t} \, dt
\end{align}
or
$$\sum_{n = 0}^\infty \frac{x^{2n + 1}}{(2n + 1)^2} = \frac{1}{2} \left [\operatorname{Li}_2 (x) - \operatorname{Li}_2 (-x) \right ], \qquad (**)$$
where $\operatorname{Li}_2 (x)$ is the dilogarithm function.
The second and third sums appearing in (1) can now be found using ($**$). For the second sum, setting $x = 1$ gives
$$\sum_{n = 1}^\infty \frac{1}{(2n + 1)^2} = \frac{1}{2} \operatorname{Li}_2 (1) - \frac{1}{2} \operatorname{Li}_2 (-1) = \frac{1}{2} \left (\frac{\pi^2}{6} + \frac{\pi^2}{12} \right ) = \frac{\pi^2}{8},$$
where the well-known special values for the dilogarithm function at 1 and $-1$ have been used.
For the third sum, setting $x = \sqrt{2} - 1$ gives
$$\sum_{n = 0}^\infty \frac{(\sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = \frac{1}{2} \left [\operatorname{Li}_2 (\sqrt{2} - 1) - \operatorname{Li}_2 (1 - \sqrt{2}) \right ]. \qquad (\dagger)$$
It now remains to express the difference between the two dilogarithms is terms of elementary constants.
To do this, we will make use of the following identities for the dilogarithm:
\begin{align}
\operatorname{Li}_2 (1-x) + \operatorname{Li}_2 \left (1 - \frac{1}{x} \right ) &= -\frac{1}{2} \ln^2 x \tag2\\
\operatorname{Li}_2 (x) + \operatorname{Li}_2 (1-x) &= \frac{\pi^2}{6} - \ln x \ln (1 - x) \tag3\\
\operatorname{Li}_2 (x) + \operatorname{Li}_2 (-x) &= \frac{1}{2} \operatorname{Li}_2 (x^2) \tag4
\end{align}
So here we go.
\begin{align}
\operatorname{Li}_2 (\sqrt{2} - 1) &= \operatorname{Li}_2 [1 - (2 - \sqrt{2})]\\
&= -\operatorname{Li}_2 \left (1 - \frac{1}{2 - \sqrt{2}} \right ) - \frac{1}{2} \ln^2 (2 - \sqrt{2}) \qquad \text{(by (2))}\\
&= - \operatorname{Li}_2 \left (-\frac{1}{\sqrt{2}} \right ) - \frac{1}{2} \ln^2 \left (\frac{\sqrt{2}}{1 + \sqrt{2}} \right )\\
&= - \operatorname{Li}_2 \left (-\frac{1}{\sqrt{2}} \right ) -\frac{1}{2} \left [\frac{1}{2} \ln 2 - \ln (1 + \sqrt{2}) \right ]^2\\
&= -\operatorname{Li}_2 \left (-\frac{1}{\sqrt{2}} \right ) - \frac{1}{8} \ln^2 2 + \frac{1}{2} \ln 2 \ln (1 + \sqrt{2}) - \frac{1}{2} \ln^2 (1 + \sqrt{2})
\end{align}
And
\begin{align}
\operatorname{Li}_2 (1 - \sqrt{2}) &= -\operatorname{Li}_2 \left (1 - \frac{1}{\sqrt{2}} \right ) - \frac{1}{2} \ln^2 \sqrt{2} \qquad \text{(by (2))}\\
&= \operatorname{Li}_2 \left (\frac{1}{\sqrt{2}} \right ) - \frac{\pi^2}{6} + \ln \left (\frac{1}{\sqrt{2}} \right ) \ln \left (1 - \frac{1}{\sqrt{2}} \right ) - \frac{1}{8} \ln^2 2 \qquad \text{(by (3))}\\
&= \operatorname{Li}_2 \left (\frac{1}{\sqrt{2}} \right ) - \frac{\pi^2}{6} -\frac{1}{2} \ln 2 \ln \left (\frac{1}{\sqrt{2}(1 + \sqrt{2})} \right ) - \frac{1}{8} \ln^2 2\\
&= \operatorname{Li}_2 \left (\frac{1}{\sqrt{2}} \right ) - \frac{\pi^2}{6} + \frac{1}{2} \ln 2 \left [\frac{1}{2} \ln 2 + \ln (1 + \sqrt{2}) \right ] - \frac{1}{8} \ln^2 2\\
&=\operatorname{Li}_2 \left (\frac{1}{\sqrt{2}} \right ) - \frac{\pi^2}{6} + \frac{1}{2} \ln 2 \ln (1 + \sqrt{2}) + \frac{1}{8} \ln^2 2.
\end{align}
Thus
\begin{align}
\operatorname{Li}_2 (\sqrt{2} - 1) - \operatorname{Li}_2 (1 - \sqrt{2}) &= - \left [\operatorname{Li}_2 \left (\frac{1}{\sqrt{2}} \right ) + \operatorname{Li}_2 \left (-\frac{1}{\sqrt{2}} \right ) \right ] +\frac{\pi^2}{6} - \frac{1}{2} \ln^2 (1 + \sqrt{2}) - \frac{1}{4} \ln^2 2\\
&= -\frac{1}{2} \operatorname{Li}_2 \left (\frac{1}{2} \right ) + \frac{\pi^2}{6} - \frac{1}{2} \ln^2(1 + \sqrt{2}) - \frac{1}{4} \ln^2 2 \qquad \text{(by (4))} \\
&= -\frac{1}{2} \left [\frac{\pi^2}{12} - \frac{1}{2} \ln^2 2 \right ] + \frac{\pi^2}{6} - \frac{1}{2} \ln^2(1 + \sqrt{2}) -\frac{1}{4} \ln^2 2\\
&= \frac{\pi^2}{8} - \frac{1}{2} \ln^2 (1 + \sqrt{2}).
\end{align}
Here the well-known value for the dilogarithm function at $x = 1/2$ has been used.
So the sum in ($\dagger$) can be expressed as
$$\sum_{n = 0}^\infty \frac{(\sqrt{2} - 1)^{2n + 1}}{(2n + 1)^2} = \frac{\pi^2}{16} - \frac{1}{4} \ln^2 (1 + \sqrt{2}).$$
Putting the final pieces of the puzzle together, (1) becomes
\begin{align}
\int_{1}^{1 + \sqrt{2}} \frac{\ln x}{x^2 - 1} \, dx &= -\frac{1}{2} \ln^2 (1 + \sqrt{2}) + \frac{\pi^2}{8} - \left [\frac{\pi^2}{16} - \frac{1}{4} \ln^2 (1 + \sqrt{2}) \right ]\\
&= \frac{\pi^2}{16} - \frac{1}{4} \ln^2 (1 + \sqrt{2}),
\end{align}
as required.