Here's how we go about doing (b). First, a lemma:
Lemma 1: For $\alpha \in K$, we have that $\text{Tr}_{K/\Bbb{Q}(\alpha)}(\alpha)$ and $N_{K/\Bbb{Q}(\alpha)}(\alpha)$ being algebraic integers iff $\alpha$ is integral over $\Bbb{Z}$.
Proof: Suppose that $\alpha \in \mathcal{O}_K$. Then $\alpha$ is certainly integral over $\mathcal{O}_{\Bbb{Q}(\sqrt{m})}$ and thus its minimal $m_\alpha(t)$ polynomial has coefficients in $\mathcal{O}_{\Bbb{Q}(\sqrt{m})}$. Since $\text{Tr}_{K/\Bbb{Q}(\sqrt{m})}(\alpha) = (-1) \times \text{(coefficient of $t$})$ and $N_{K/\Bbb{Q}(\sqrt{m})}(\alpha)$ is the constant term in $m_\alpha(t)$, these are both in $\mathcal{O}_{\Bbb{Q}(\sqrt{m})}$ and thus are algebraic integers. Conversely if $T = \text{Tr}_{K/\Bbb{Q}(\sqrt{m})}(\alpha)$ and $N = N_{K/\Bbb{Q}(\sqrt{m})}(\alpha)$ are algebraic integers, $\Bbb{Z}[N,T]$ is a finitely -generated $\Bbb{Z}$ - module. Also, $\alpha$ is integral over $\mathcal{O}_{\Bbb{Q}(\sqrt{m})}$ and so $\Bbb{Z}[N,T][\alpha]$ is a finitely - generated $\Bbb{Z}[N,T]$ - module. Then $\Bbb{Z}[N,T][\alpha]$ is a finitely - generated $\Bbb{Z}$ - module and so by Proposition 5.1(c) of Atiyah - Macdonald, $\alpha$ is integral over $\Bbb{Z}$.
Proposition 1: Suppose $m \equiv 1\mod{4}$, $n \equiv k \equiv 2$ or $3 \mod{4}$. Then an integral basis for $\mathcal{O}_K$ is
$$\left\{ 1, \frac{1 + \sqrt{m}}{2},\sqrt{n},\frac{\sqrt{n} + \sqrt{k}}{2} \right\}$$
where $k = mn/(m,n)^2$.
Proof: Write down the minimal polynomial for $\alpha$ over $\Bbb{Q}(m)$. Then by the lemma we see that if $\alpha \in \mathcal{O}_K$ is of the form
$$\alpha = \frac{a + b\sqrt{m} + c \sqrt{n} + d\sqrt{k}}{2}$$
with $a,b,c,d\in\Bbb{Z}$ and $a \equiv b\mod{2}$, $c\equiv d\mod{2}$. We can rewrite $\alpha$ as
$$\begin{eqnarray*} \alpha &=& \frac{a +b\sqrt{m} - b + b + c\sqrt{n} - d\sqrt{n} +d\sqrt{n} + d\sqrt{k} }{2}\\
&=& \frac{ a-b}{2} + b\left(\frac{1 + \sqrt{m}}{2}\right) +\frac{c-d}{2}\left(\sqrt{n}\right) + d\left(\frac{\sqrt{n} + \sqrt{k}}{2}\right)\end{eqnarray*}$$
Since $\frac{a-b}{2}$ and $\frac{c-d}{2}$ are arbitrary integers this concludes the proof of the proposition. Now that you have an integral basis, you only need to calculate the determinant of a $4 \times 4$ matrix to get the discriminant of $\mathcal{O}_K$.
Note to user: Since this is a homework problem I have left out some details. Among the details you need to fill in are:
How did I get that $\alpha$ must be of the form prescribed above?
How does my calculation in the proposition show that what I claimed is an integral basis for $\mathcal{O}_K$?
You are urged to fill them in and follow my method to do (a).