Update
My original thoughts are better expressed on this mathoverflow post.
Short Version
When defining the $-$, $+$, $÷$, and $×$ operators in a functional manner, one can observe that the $(-, +)$ pair is very similar to the $(÷, ×)$ pair, and the only main differences between them is their identity terms ($0$ and $1$ respectively) and the fact that the divisor cannot be equal to the identity term of the $(-, +)$ pair of operators.
My questions are the following: where can I find some prior work on this topic, and can one define a family of such operator pairs with different identity terms? Is there any theory for such objects?
Set Theory Version
While the arithmetic properties outlined below can be defined for both sets and types, referring to set theory might help clarify the question: if $(+, -)$ with 0 as identity element defines a group and $[(+, -), (×, ÷)]$ with 1 as identity element for $(×, ÷)$ defines a field, what is defined by $[(+, -), (×, ÷), (\#, @)]$ with an identity element for $(\#, @)$ other than 0 and 1?
Since $(+, -, 0)$ is used to define $\mathbb{Z}$ and $[(+, -, 0), (×, ÷, 1)]$ is used to define $\mathbb{Q}$, which $(\#, @, r)$ could be introduced so that $[(+, -, 0), (×, ÷, 1), (\#, @, r)]$ would define $\mathbb{S}$, with $\mathbb{Q} \subset \mathbb{S} \subseteq \mathbb{R}$?
Intuitively, $\#$ should be based on exponentiation, while $@$ should be based on logarithm.
Long Version
One can define the $-$, $+$, $÷$, and $×$ operators in the following fashion:
Minus:
$ \small \text{Minus Identity Term: the minus identity term is equal to 0.}\normalsize\\ i(m) = 0.\\ \quad\\ \small \text{Subtraction Identity:} \enspace \alpha - 0 = \alpha.\normalsize\\ m(\alpha, i(m)) = \alpha.\\ \quad\\ \small \text{Self Subtraction:} \enspace \alpha = \beta \Longleftrightarrow \alpha - \beta = 0.\normalsize\\ \alpha = \beta \Longleftrightarrow m(\alpha, \beta) = i(m).\\ \quad\\ \small \text{Subtraction Affine Identity:} \enspace \alpha - (\beta - \gamma) = \gamma - (\beta - \alpha).\normalsize\\ m(\alpha, m(\beta, \gamma)) = m(\gamma, m(\beta, \alpha)).\\ $
Plus:
$ \small \text{Multiplication Affine Identity:} \enspace (\alpha + \beta) - \gamma = \alpha - (\gamma - \beta).\normalsize\\ m(p(\alpha, \beta), \gamma) = m(\alpha, m(\gamma, \beta)).\\ $
Divides:
$ \small \text{Divides Identity Term: the divides identity term is equal to 1.} \normalsize\\ i(d) = 1.\\ \quad\\ \small \text{Division Identity:} \enspace \frac{\alpha}{1} = \alpha.\normalsize\\ d(\alpha, i(d)) = \alpha.\\ \quad\\ \small \text{Self Division:} \enspace \frac{\alpha}{\alpha} = 1.\normalsize\\ \alpha = \beta \Longleftrightarrow d(\alpha, \beta) = i(d).\\ \quad\\ \small \text{Division Affine Identity:} \enspace \frac{\alpha}{\frac{\beta}{\gamma}} = \frac{\gamma}{\frac{\beta}{\alpha}}.\normalsize\\ d(\alpha, d(\beta, \gamma)) = d(\gamma, d(\beta, \alpha)).\\ $
Times:
$ \small \text{Multiplication Affine Identity:} \enspace \frac{\alpha × \beta}{\gamma} = \frac{\alpha}{\frac{\gamma}{\beta}}.\normalsize\\ d(t(\alpha, \beta), \gamma) = d(\alpha, d(\gamma, \beta)).\\ $
We observe that the pair of divides and times operators are defined exactly the same way as the pair of minus and plus operators, but with different identity terms, and with a minus identity restriction on the multiplier subdomain of the divides function.
The symmetry established between the pairs of operators $(-, +)$ and $(÷, ×)$ allows the following pairs of properties to be proven for both properties in every pair by proving it for a single property.
The following properties are established for any pair of operator functions $(f, g)$, which corresponds to the pairs $(-, +)$ and $(÷, ×)$. Furthermore, the term reverse is used to refer to the opposite for the $(-, +)$ pair and to the inverse for the $(÷, ×)$ pair.
Proofs for the $(-, +)$ pair can be found on this notebook.
Anticommutativity: $f(\alpha, \beta) = f(i(f), f(\beta, \alpha).$
$ \alpha - \beta = -(\beta - \alpha).\\ \quad\\ \displaystyle \frac{\alpha}{\beta} = \frac{1}{\frac{\beta}{\alpha}}.\\ $
Double Reverse Identity: $\alpha = f(i(f), f(i(f), \alpha)).$
$ \alpha = -(-\alpha).\\ \quad\\ \displaystyle \alpha = \frac{1}{\frac{1}{\alpha}}.\\ $
Associative Commutativity: $f(f(\alpha, \beta), \gamma) = f(f(\alpha, \gamma), \beta).$
$ (\alpha - \beta) - \gamma = (\alpha - \gamma) - \beta.\\ \quad\\ \displaystyle \frac{\frac{\alpha}{\beta}}{\gamma} = \frac{\frac{\alpha}{\gamma}}{\beta}.\\ $
Affine Equivalence: $f(\alpha, \beta) = \gamma \Longleftrightarrow f(\alpha, \gamma) = \beta.$
$ \alpha - \beta = \gamma \Longleftrightarrow \alpha - \gamma = \beta.\\ \quad\\ \displaystyle \frac{\alpha}{\beta} = \gamma \Longleftrightarrow \frac{\alpha}{\gamma} = \beta.\\ $
Identity Element: $g(\alpha, i(f)) = \alpha.$
$ \alpha + 0 = \alpha.\\ \quad\\ \alpha × 1 = \alpha.\\ $
Dual Substitution: $g(\alpha, \beta) = f(\alpha, f(i(f), \beta)).$
$ \alpha + \beta = \alpha - (-\beta).\\ \quad\\ \alpha × \beta = \frac{\alpha}{\frac{1}{\beta}}.\\ $
Dual Equivalence: $\alpha = g(\beta, \gamma) \Longleftrightarrow \beta = f(\alpha, \gamma).$
$ \alpha = \beta + \gamma \Longleftrightarrow \beta = \alpha - \gamma.\\ \quad\\ \alpha = \beta × \gamma \Longleftrightarrow \beta = \frac{\alpha}{\gamma}.\\ $
Commutativity: $g(\alpha, \beta) = g(\beta, \alpha).$
$ \alpha + \beta = \beta + \alpha.\\ \quad\\ \alpha × \beta = \beta × \alpha.\\ $
Associativity: $g(g(\alpha, \beta), \gamma) = g(\alpha, g(\beta, \gamma)).$
$ (\alpha + \beta) + \gamma = \alpha + (\beta + \gamma).\\ \quad\\ (\alpha × \beta) × \gamma = \alpha × (\beta × \gamma).\\ $
Dual Identity: $(g(f(\alpha, \beta), \beta) = \alpha) \land (f(g(\alpha, \beta), \beta) = \alpha).$
$ ((\alpha - \beta) + \beta = \alpha) \land ((\alpha + \beta) - \beta = \alpha).\\ \quad\\ \displaystyle (\frac{\alpha}{\gamma} × \beta = \alpha) \land (\frac{\alpha × \beta}{\beta} = \alpha).\\ $