Look at the generaliyzed recurrence $T\left(x\right)=T\left(c\cdot x\right)+\left(\log_{10}x\right)^{2}$ with $0<c<1$.
First of all, $\text{Dom}T\left(x\right)\subseteq\mathbb{R}^{+}$ as $\log_{10}x$ existst and $\text{Dom}\log_{10}x\subseteq\mathbb{R}^{+}$. Therefore, define $$U(x)=T\left(10^{x}\right)\qquad\log_{10}c=\alpha<0$$
Then:
$$T\left(x\right)=U\left(\log_{10}x\right)\qquad T\left(cx\right)=U\left(\alpha+\log_{10}x\right)$$
Therefore, for U, the functional equation becomes:
$$U\left(v\right)=U\left(\alpha+v\right)+v^{2}$$
Let $v_{1}=-k\alpha+\beta$ with $\beta\in(0,-\alpha]$ and $k$ integer, then
$$U\left(\beta-k\alpha\right)=U\left(\beta-\left(k-1\right)\alpha\right)+\left(\beta-k\alpha\right)^{2}$$
Let $v_{2}=k\alpha+\beta$ with $\beta\in(0,-\alpha]$ and $k$ integer, then
$$U\left(\beta+k\alpha\right)=U\left(\beta+\left(k-1\right)\alpha\right)-\left(\beta-\left(k-1\right)\alpha\right)^{2}$$
$$U(v_{1})=\sum_{i=1}^{k}\left(\beta-i\alpha\right)^{2}+U\left(\beta\right)=\beta^{2}k-\alpha\beta k(k+1)+\frac{\alpha^{2}}{6}k(k+1)(2k+1)+U\left(\beta\right)$$
$$U(v_{2})=-\sum_{i=0}^{k-1}\left(\beta-i\alpha\right)^{2}+U\left(\beta\right)=\beta^{2}k-\alpha\beta k(k+1)+\frac{\alpha^{2}}{6}k(k+1)(2k+1)+U\left(\beta\right)$$
$$U\left(\beta-k\alpha\right)=\beta^{2}k-\alpha\beta k(k+1)+\frac{\alpha^{2}}{6}k(k+1)(2k+1)+U\left(\beta\right)$$
$$U\left(\beta+k\alpha\right)=-\beta^{2}k+\alpha\beta k(k+1)-\frac{\alpha^{2}}{6}k(k-1)(2k-1)+U\left(\beta\right)$$
Hence, we can define any function $U$ on $(0,-\alpha]$ and then extend it with the above formula. Implying $T $ from this is straightforward via the relation $U(x)=T\left(10^{x}\right)$. So in your case, you can have any function $f(x)$ on $\left(0,\log_{10}\frac{2}{3} \right]$, extend via the previously decribed relations, and set the function $T$ via $T(x)=U(\log_{10}x)$