$x^{2007}$ divided by $x^2-x+1$.
I consider to solve this problem, should I break the $x^{2007}$ to find the formula $x^2-x+1$?
$x^{2007}$ divided by $x^2-x+1$.
I consider to solve this problem, should I break the $x^{2007}$ to find the formula $x^2-x+1$?
Write: $$\boxed{x^{2007} = k(x)(x^2-x+1)+r(x)}$$ where $r(x)$ is a linear polynomial.
Say $a$ is zero of $x^2-x+1$, then $$ a^2-a+1=0\;\;\;/\cdot (a+1)$$ we get $$a^3+1 =0 \;\;\Longrightarrow \;\;a^3 = -1$$ and if we put $x=a$ in boxed equation we get $$-1= a^{2007} = k(a)\cdot 0+r(a)$$ and the same for other zero $b =\overline{a}$.
So if $r(x) = kx+n$, then we have a system $$-1=ka+n$$ $$-1=kb+n$$ which can easly be solved.
Since various answers have already been given, here is another way of writing the same as has been suggested elsewhere.
This can be expressed in a form of modular arithmetic for polynomials. We have $$x^3+1=(x+1)(x^2-x+1)\equiv 0 \bmod (x^2-x+1)$$
Now taking equivalences to the same modulus we have $x^3\equiv -1$ and $$x^{2007}=x^{3\cdot669}=(x^3)^{669}\equiv (-1)^{669}\equiv -1$$
This seems to me to be surprisingly rarely used, but often has the same notational convenience as modular arithmetic for integers.
You can also proceed artificially, since you already know the solution.
$$x^{2007}+1 = (x^3+1)\underbrace{\Big((x^3)^{668}+(x^3)^{667}+...+(x^3)^{2}+x^3+1\Big)}_{q(x)}$$
So we have $$x^{2007}+1 = (x^3+1)q(x) = (x^2-x+1)\underbrace{(x+1)q(x)}_{k(x)}$$
so $$x^{2007} = (x^2-x+1)k(x)-1$$ and thus the remainder is $-1$.
Doing long division: $$\frac{x^{2007}}{x^2-x+1}=\frac{x^{2008}+x^{2007}}{x^3+1}=\\ \frac{(x^3+1)(x^{2005}+x^{2004}-x^{2002}-x^{2001}+x^{1999}+x^{1998}-\cdots-x^4-x^3+x+1)-x-1}{x^3+1}=\\ a(x)-\frac{x+1}{x^3+1}=\\ a(x)+\frac{\color{red}{-1}}{x^2-x+1}.$$
Hint $ $ For motivation recall the $\rm\color{#c00}{easy}$ way to compute the parity of a decimal integer via the parity of its units digit, and also the two similar divisibility tests listed below
$\begin{align} 2\mid 10\ \ \ \ \Rightarrow\ \ n\bmod 2\ \ \,&= \, {\overbrace{(n\bmod 10)}^{\large \text{units digit}}}\bmod 2\\[.2em] 25\mid 100\ \ \Rightarrow\ \ n\bmod 25\, &= \, (n\bmod 100)\bmod 25\\[.3em] 7\!\cdot\!13=10^2\!-\!10\!+\!1\mid 10^3\!+\!1\ \ \Rightarrow\ \ n\bmod 7\!\cdot\!13\, &= \, (n\bmod 1001)\bmod 7\!\cdot\!13\\[.4em] \text{similarly}\ \ \ x^2\!-\!x\!+\!1\mid x^3\!+1\Rightarrow f\bmod x^2\!-\!x\!+\!1\ &=\ \underbrace{(f\bmod x^3\!+1)}_{\Large\color{#c00}{ x^3\ \equiv -1}}\bmod x^2\!-\!x\!+\!1 \end{align}$
It is $\rm\color{#c00}{easy}$ to compute $f\bmod x^{\large 3}\!+1\,$ since we can use $\,\color{#c00}{x^{\large 3}\equiv -1}\,$ to reduce mod $\color{#c00}3\,$ all expts on $x$
namely we have $\ x^{\large k}\! = x^{\large r+3q}\!\equiv (-1)^{\large q} x^{\large r}\ $ where $\,r = k\bmod 3\, \le\, 2,\ $ because
$$\bmod x^{\large 3}+1\!:\ \ \color{#c00}{x^{\large 3}\equiv -1}\,\Rightarrow\, x^{\large 3q+r}\equiv (\color{#c00}{x^{\large 3}})^{\large q}x^{\large r}\equiv (\color{#c00}{-1})^{\large q}x^{\large r}$$
Remark $ $ Alternatively we can use $\,\color{#c00}{x^{\large 6}\equiv 1}\,$ to reduce the expts $\!\bmod 6,\,$ a technique often used when we know the order of some element (or any multiple of the order).
The same optimization works in general when there is a multiple $nm$ of the modulus $m$ where modular arithmetic is $\rm\color{#c00}{easier}$. First easy-reduce $\,x\bmod nm\,$ then reduce that $\!\bmod m,\,$ i.e.
$$ x\bmod m\ =\ (x\bmod nm)\bmod m\qquad$$
$\begin{align}\text{valid by}\qquad\qquad\quad\, x\,\ &=\,\ x\bmod nm\,+\, q\,nm \ \ \text{ by the division }\ x\div nm\\[.2em] \Rightarrow\ \ x\bmod m\ &=\, (x\bmod nm)\bmod m \end{align}$
In congruences $\ \bbox[5px,border:1px solid red]{x\equiv \bar x\pmod{\!nm}\,\Rightarrow\, x\equiv \bar x\pmod{\! n}}\,\ $ by $\,\ m\mid nm\mid x-\bar x$
i.e. congruences persist modulo divisors of the modulus. Above $\,\bar x = x\bmod nm$
See also this answer for a similar but more complex example, and see this answer for the above divisibility test for $13$ and the test for $2^k$ using the initial $k$ decimal digits.