$$
\begin{align}
\int_0^\infty\frac{x^\alpha\log(x)}{x^2+1}\,\mathrm{d}x
&=\frac{\mathrm{d}}{\mathrm{d}\alpha}\int_0^\infty\frac{x^\alpha}{x^2+1}\,\mathrm{d}x\tag1\\
&=\frac12\frac{\mathrm{d}}{\mathrm{d}\alpha}\int_0^\infty\frac{x^{\frac{\alpha-1}2}}{x+1}\,\mathrm{d}x\tag2\\
&=\frac12\frac{\mathrm{d}}{\mathrm{d}\alpha}\frac{\Gamma\left(\frac{1+\alpha}2\right)\Gamma\left(\frac{1-\alpha}2\right)}{\Gamma(1)}\tag3\\
&=\frac\pi2\frac{\mathrm{d}}{\mathrm{d}\alpha}\csc\left(\pi\frac{1-\alpha}2\right)\tag4\\
&=\frac\pi2\frac{\mathrm{d}}{\mathrm{d}\alpha}\sec\left(\frac{\pi\alpha}2\right)\tag5\\
&=\frac{\pi^2}4\tan\left(\frac{\pi\alpha}2\right)\sec\left(\frac{\pi\alpha}2\right)\tag6
\end{align}
$$
Explanation:
$(1)$: $\frac{\mathrm{d}}{\mathrm{d}\alpha}x^\alpha=x^\alpha\log(x)$
$(2)$: substitute $x\mapsto\sqrt{x}$
$(3)$: Beta Function
$(4)$: Euler Reflection Formula
$(5)$: trigonometric identity
$(6)$: evaluate the derivative