Another with roots of unity ...
Let $\omega:=\exp\left(\frac{\pi i}{5}\right)$ and $\phi$ is the golden ratio defined via relation $$\phi^2:=\phi+1\qquad|\quad\phi>0\tag{a}$$i.e., explicitly : $\phi=\frac{1+\sqrt{5}}{2}$ (but only (a) is sufficient to proceed further through this text, without radicals of 5's at start), then following holds true :
Via Euler's formula: $$\Re\{\omega\}=\Re\bigg\{ \exp\left(\frac{\pi i}{5}\right) \bigg\} = \cos \left(\frac{\pi}{5}\right)$$
Similarly
$$\Im\{\omega\}=\sin \left(\frac{\pi}{5}\right)$$
Moreover, it's clear, by properities of the function cosine (resp. sine) on the interval $(0,\frac{\pi}{2})$, that $$\Re\{\omega\}>0\qquad\mathrm{resp.}\qquad\Im\{\omega\}>0\tag{0}$$ By Moivre's formula also $$\omega^5 = e^{i\pi}=-1$$
I.e.:
$$\omega^5+1=0$$
Since $\omega\neq -1$ we divide this by factor $\omega+1$, hence
$$\omega^4-\omega^3+\omega^2-\omega+1=0\tag{1}$$
This could be wieved as a polynomial degree 4 in $\omega$, so we may guess, it can be factorised more suggesting :
$$\omega^4-\omega^3+\omega^2-\omega+1 = (\omega^2-\alpha\omega+1)(\omega^2-\beta\omega+1)\tag{2}$$
Expanding out we get a system for $\alpha$ and $\beta$ :
$$\alpha+\beta=1$$
$$\alpha\beta=-1$$
Subctracting $\phi$ in the equation for golden ratio and dividing through $\phi$ we get an equivalent relation $$\phi-\frac{1}{\phi}=1\tag{b}$$
So the conditions for $\alpha$ and $\beta$ are met when :
$$\alpha=\phi$$ $$\beta=-\frac{1}{\phi}$$
Now we have from $(1)$ and $(2)$ two quadratic equations for $\omega$ :
$$\omega=\frac{\alpha}{2}\pm\frac{1}{2}\sqrt{\alpha^2-4}\qquad \mathrm{or}\qquad \omega=\frac{\beta}{2}\pm\frac{1}{2}\sqrt{\beta^2-4}\tag{3}$$
Dividing $(b)$ by $\phi$ and rearanging we get
$$\frac{1}{\phi}=1-\frac{1}{\phi^2}\tag{c}$$
So then $$\alpha^2-4=\phi^2-4\overset{(a)}{=}\phi-3\overset{(b)}{=}\frac{1}{\phi}-2\overset{(c)}{=}-\frac{1}{\phi^2}-1<0 \quad\mathrm{since}\quad \phi>0$$
... and also ... $$\beta^2-4=\frac{1}{\phi^2}-4\overset{(c)}{=}-\frac{1}{\phi}-3<0 \quad\mathrm{since}\quad \phi>0$$
Taking square roots make us some imaginary numbers, from (3) then, taking real part
$$\Re\{\omega\}=\frac{\alpha}{2}\qquad \mathrm{or}\qquad \Re\{\omega\}=\frac{\beta}{2}$$
However, since $\beta=-\frac{1}{\phi}<0$ is by $(0)$ and $(3)$ nessesarily and uniquely :
$$\omega=\frac{\alpha}{2}+\frac{i}{2}\sqrt{4-\alpha^2}=\frac{\phi}{2}+\frac{i}{2}\sqrt{3-\phi}$$
Ergo
$$\cos\left(\frac{\pi}{5}\right)=\Re\{\omega\}=\frac{\phi}{2}=\frac{1+\sqrt{5}}{4}$$
and, as a bonus :
$$\sin\left(\frac{\pi}{5}\right)=\Im\{\omega\}=\frac{1}{2}\sqrt{3-\phi}=\frac{\sqrt{5-\sqrt{5}}}{4}$$