Hint $\ \ 2^k\mid a\!+\!10^k b\iff 2^k\mid a\,\ $ by $\,\ 2^k\mid 10^k = 2^k 5^k$
Better $\,\ a\bmod 2^k = (\underbrace{a\bmod 10^k}_{\large {\rm first}\ k\ {\rm digits}})\bmod{ 2^k},\ $ an example of the simpler multiple method.
Better $\,\ a\equiv b\pmod{\!10^k}\,\Rightarrow\, a\equiv b\pmod{\!2^k}$
Better $\,\ a\equiv b\pmod{\!mn}\,\Rightarrow\, a\equiv b\pmod{\!n}\,\ $ by $\,\ n\mid mn\mid a-b$
e.g. $\bmod 1001\!:\ \color{#c00}{10^{\large 3}}\!\equiv -1 \,\Rightarrow\, a=12,013,002\equiv 12(\color{#c00}{10^{\large 3}})^{\large 2}\!+13(\color{#c00}{10^{\large 3}})+2\equiv 12\!-\!13\!+\!2\equiv 1$
so $\ 7\!\cdot\!13=10^2\!-\!10\!+\!1\mid 10^3\!+\!1\,\Rightarrow\, a \bmod 13 = (a \bmod 1001)\bmod 13 = 1\bmod 13 = 1$.
In congruence language: $\ a\equiv 1\pmod{\!13j\!=\!\!10^3\!+\!1}\,\Rightarrow\, a\equiv 1\pmod{\!13}$
That's the idea behind one divisibility test for $13$.