First I show how to reduce it to computing $\,7^{-1}\!\pmod{\!600};$ then I explain why this reduction works so universally due to persistence of GCDs having linear (Bezout) representation.
$\langle a\rangle$ has order $\,n\mid 600\,$ so $\langle a\rangle$ is an image of $\,\Bbb Z/600,\,$ so it suffices to solve it mod $600;\,$ said more concretely $\,a\equiv 7b\pmod{\!600\!=\!nk}\,\Rightarrow\,a\equiv 7b\pmod{\!n}.$ $\,7^{-1}$ exists by $(7,600)=1;\,$ explicitly
$\!\bmod 600\!:\ 7b\equiv a\iff b\equiv a/7\equiv\color{#c00}{343}\,a,\ $ by $ \underbrace{\ 7^{\large 4}\equiv 1\,\Rightarrow\, 1/7\equiv 7^{\large 3}\!\equiv \color{#c00}{343}}_{\Large\ \ 7^{\LARGE 2}\, \equiv\ \pm1\ \bmod\, 24\ \,\&\, \ 25\qquad}$
Remark $\ $ The proof requires only the coprimality of $\,k,n = 7,600\,$ since then we have a Bezout equation $\, k'k - n' n = 1\,$ $\,\Rightarrow\,\bmod n\!:\ k'\equiv k^{-1} =: (1/k)_n\,$ so we can proceed as above, i.e.
$$\begin{align} \color{#c00}{na = 0}\,\Rightarrow&\,\ k'(ka) = (1\!+\!n'n)a = a\! +\! n'(\color{#c00}{na}) = a\ \quad\rm Additive\ Form\\[.4em]
\color{#c00}{a^{\large n} = 1}\,\Rightarrow&\,\ (a^{\large k})^{\large k'} = a^{\large 1\ +\ n'n}\ \ \ =\ \ a\,(\color{#c00}{a^{\large n}})^{\large n'} =\ a\ \quad\rm Multiplicative\ Form\end{align}\quad$$
hence $\quad\ \ \bbox[5px,border:1px solid #c00]{\begin{align}
\text{if $\,\ n\,a = 0 = n\,b\ $ then }\ kb = a &\iff b = (1/k)_n\, a\\[.4em]
\text{if $\:\!\ a^n\, =\, 1\, =\, b^n \ $ then }\ b^{\large k} = a &\iff b = a^{\large (1/k)_n}
\end{align}}$
This works so nicely because whenever a gcd has a linear representation (Bezout) it is universal, i.e. the gcd persists in extension rings /algebras / modules - just as above
Note $\ $ Alternatively we can invert $7$ mod $\ 600 = 24\cdot 25\ $ using Easy CRT as below
$\!\bmod 24\!:\ \dfrac{1}7\ \equiv\ \dfrac{49}7\ \equiv\ 7\qquad\qquad\qquad\ $
$\!\bmod 25\!:\ \dfrac{1}7\equiv \dfrac{-49}7\equiv-7\ \ {\rm so}\ \smash{\ \dfrac{1}7\equiv \overbrace{-7\!+\!25\left[\dfrac{14}{25}\bmod 24\right]}^{\text{by Easy CRT}}\! \equiv -7\!+\!25[14]\equiv \color{#c00}{343}\pmod{600}}$