An example is the graph $\mathcal{G}(f)$ of the Cantor function $f$.
The Cantor function is a continuous, increasing function from $f:[0,1]\to[0,1]$ with $f(0)=0$, $f(1)=1$. Let
$$\gamma(t)=(t,f(t)),\qquad t\in [0,1] $$
A simple argument shows that the length of the graph, i.e. the length of the curve $\gamma$ is larger than $\sqrt{2}$.
For any partition $0=t_0<t_1<\dots <t_n=1$ we have
\begin{align*}\ell(\mathcal{G}(f))\geq\sum_{i=0}^{n-1}\|\gamma(t_{i+1})-\gamma(t_i)\|&=\sum_{i=0}^{n-1}\sqrt{|t_{i+1}-t_i|^2+|f(t_{i+1})-f(t_i)|^2} \geq \\
\text(Cauchy-Schwarz)\quad &\geq \frac{1}{\sqrt{2}}\left[
\sum_{i=0}^{n-1}|t_{i+1}-t_i|+\sum_{i=0}^{n-1}\left|f(t_{i+1})-f(t_i)\right|\right]=\\
\text{(}f\textit{ is increasing)}\quad &=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\sum_{i=0}^{n-1}\left(f(t_{i+1})-f(t_i)\right)
=\frac{1}{\sqrt{2}}\left[1+f(t_n)-f(t_0)\right]=\\
(f(0)=0,\;f(1)=1)\quad&=\frac{1}{\sqrt{2}}\left[1+f(1)+f(0)\right] =\sqrt{2}
\end{align*}
This could also be seen as an argument that any rectifiable curve connecting the points $(0,0)$ and $(1,1)$ cannot be shorter than $\sqrt{2}$, i.e. the length of the segment connecting those two points.
With the same computations but using the opposite of Cauchy-Schwarz inequality
\begin{align*}\sum_{i=0}^{n-1}\|\gamma(t_{i+1})-\gamma(t_i)\|&=\sum_{i=0}^{n-1}\sqrt{|t_{i+1}-t_i|^2+|f(t_{i+1})-f(t_i)|^2} \leq \\
&\leq
\sum_{i=0}^{n-1}|t_{i+1}-t_i|+\sum_{i=0}^{n-1}\left|f(t_{i+1})-f(t_i)\right|=2\end{align*}
and taking the $\sup$ over all partitions of $[0,1]$, we get that $\mathcal{G}(f)$ is, indeed, a rectifiable curve, with $\ell(\mathcal{G}(f))\leq 2$.
However, we also $f'=0$ a.e. on $[0,1]$, and hence
$$\ell (\mathcal{G}(f))\geq \sqrt{2} > 1 =\int_0^1dt=\int_0^1\sqrt{1^2+|f'(t)|^2}dt=\int_0^1\|\gamma'(t)\|dt$$