Let $E$ a vector space and $\dim(E)=n$
and let $f,g \in L(E)$
show that $\operatorname{rank}(f\circ g) \leq \operatorname{rank}(f)+\operatorname{rank}(g)-n$
I can see that $\operatorname{Ker}(g) \subset \operatorname{Ker}(f\circ g)$
so $\dim \operatorname{Ker}(g) \leq \dim \operatorname{Ker}(f\circ g)$
by the rank-nullity theorem $\operatorname{rank}(g) \leq \operatorname{rank}(f\circ g)$
I am stuck here.