How to find the summation of $\Sigma\frac{(n+1)(n+2)}{2!}$ ?
MY WORK:
I know that the expression in the summation is the general term of the binomial expansion $(1-x)^{-3}$ . I have a solution where I consider : $$(1-x)^{-3}=a_0+a_1x+a_2x^2 +...+a_nx^n +...$$ Then I multiply it with the following : $$(1-x)^{-1}=1+x+x^2+x^3+ ... + x^n+ ...$$ Equating co efficients of $x^n$ , I get : $$a_0+a_1+a_2+...+a_n=\Sigma\frac{(n+1)(n+2)}{2!}=\frac{(n+1)(n+2)(n+3)}{3!}$$ ...
CAN I DO IT IN ANY OTHER WAY OTHER THAN BINOMIAL EXPANSION?