Let $X_1$ and $X_2$ be i.i.d. normal.
The question is: Can we find the joint distribution of a pair \begin{align}(U_1,U_2)=(\max(X_1,X_2), \min(X_1,X_2)). \end{align}
What I did
Note that this is just the ordering of $X_1$ and $X_2$. In other words, If $X_1>X_2$ then $(U_1,U_2)=(X_1,X_2)$ and if $X_2<X_1$ then $(U_1,U_2)=(X_2,X_1)$.
Then for every set $A$ we have that \begin{align} P( (U_1,U_2) \in A)&= P( (U_1,U_2) \in A \mid X_1>X_2) P( X_1>X_2)+ P( (U_1,U_2) \in A \mid X_1\le X_2) P( X_1 \le X_2)\\ &= \frac{1}{2} P( (U_1,U_2) \in A \mid X_1>X_2)+ \frac{1}{2} P( (U_1,U_2) \in A \mid X_1 \le X_2)\\ &=P( (X_1,X_2) \in A \mid X_1>X_2)+ \frac{1}{2} P( (X_2,X_1) \in A \mid X_1 \le X_2) \end{align}
Can somehow finish this?