In Independent events and Kolmogorov, it seems Petite Etincelle is trying to answer without Kolmogorov 0-1 Law.
Without using Kolmogorov 0-1 Law how do you prove the last step? I tried:
$$0 = E[e^{-M_{\infty}}] = E[e^{-M_{\infty}}1_{M_{\infty}=\infty}+e^{-M_{\infty}}1_{M_{\infty}<\infty}]$$
$$=E[0 \times 1_{M_{\infty}=\infty}+e^{-M_{\infty}}1_{M_{\infty}<\infty}]$$
Then what?
With Kolmogorov 0-1 Law, how do you prove the last step?
I tried to suppose on the contrary that $P(e^{-\sum_{k=1}^\infty I_{E_k}} = 0)<1$. Then by Kolmogorov 0-1 Law, $$P(e^{-\sum_{k=1}^\infty I_{E_k}} = 0)=0$$
$$\to P(\sum_{k=1}^\infty I_{E_k} < \infty) = 1$$
$$\to E[\sum_{k=1}^\infty I_{E_k}] < \infty$$
$$\to \sum_{k=1}^\infty E[I_{E_k}] < \infty$$
$$\to \sum_{k=1}^\infty P(E_k) < \infty$$