$\mathbf{X}$ is a $n\times m$ matrix and $$ f(\mathbf{X}) = \min\limits_{X = UV} \max_i \mathbf{\|U_i\|} \max_j \mathbf{\|V_j\|} \;\; \text{(max over the rows) and } \|\| \text{is the $l_2$ norm} $$
If $\mathbf{P\Sigma Q'}$ is the SVD of $\mathbf{X}$, then we can consider $\mathbf{U} = \mathbf{P\Sigma^{1/2}}$ and $\mathbf{V} = \mathbf{Q\Sigma^{1/2}})$.
How can I show that $\mathbf{X}_{tr} \leq \sqrt{nm} f(\mathbf{X})$ where $\mathbf{X}_{tr}$ is the trace norm of $\mathbf{X}$ (sum of singular values)
What I did so far,
Trace norm can be written in matrix form as $\mathbf{X}_{tr} = \mathbf{Tr}(\Sigma\mathbf{C}), \mathbf{C} \text{ is the } m \times n \text{ matrix of ones}$, and using Cauchy-Schwarz inequality,
$ \mathbf{Tr^2(\Sigma C}) \leq \mathbf{Tr(\Sigma'\Sigma)}\mathbf{Tr(C'C)} = nm\mathbf{Tr(\Sigma'\Sigma)}$
Now, I am stuck at the point $\mathbf{Tr(\Sigma'\Sigma)}$, which is the sum of the eigenvalues of $\mathbf{X'X}$. How can I show that $\mathbf{Tr(\Sigma'\Sigma)} \leq f(\mathbf{X})$.