Be careful: for convenience of the following derivation I have changed $m$ to $m+1$.
We are going to prove that for all integer $n>m\ge0$:
$$
S(n,m):=\int_0^1\frac{\log^n(1-u)}{u^{m+1}}du=\frac{(-1)^n n!}{m!}\sum_{i=0}^{m}{m \brack i}\zeta(n+1-i).\tag{1}
$$
where ${m \brack i}$ are the Stirling numbers of the first kind and $\zeta(n)$ are the Riemann functions.
First we check that the expression is valid for $m=0$ and arbitrary $n>0$:
$$\begin{align}
(-1)^nS(n,0)&=(-1)^n\int_0^1\frac{\log^n(1-u)}{u}du\\
&\stackrel{1-u\mapsto e^{-t}}{=}\int_0^{\infty}\frac{t^n e^{-t}}{1-e^{-t}}dt\\
&=\int_0^{\infty} t^n\sum_{k=1}^\infty e^{-kt}\; dt\\
&=\sum_{k=1}^\infty\int_0^{\infty} t^n e^{-kt}\; dt\\
&\stackrel{t\mapsto z/k}{=}
\sum_{k=1}^\infty\frac{1}{k^{n+1}} \int_0^{\infty}z^n e^{-z}\; dz\\
&=n!\zeta(n+1).
\end{align}$$
Assume now that (1) is valid for some $m\ge0$ and arbitrary $n> m$. We will show that this implies that the expression is valid for $m+1$ and arbitrary $n> m+1$.
$$\begin{align}
S(n,m)&=\int_0^1\frac{\log^{n}(1-u)}{u^{m+1}}du\\
&=-\frac{1}{n+1}\underbrace{\left[\frac{(1-u)\log^{n+1}(1-u)}{u^{m+1}}\right]_0^1}_{=0}\\
&\quad\quad+\frac{1}{n+1}\int_0^1\left(\frac{m}{u^{m+1}}-\frac{m+1}{u^{m+2}}\right)\log^{n+1}(1-u)du\\
&=\frac{m}{n+1}S(n+1,m)-\frac{m+1}{n+1}S(n+1,m+1)
\end{align}$$
or
$$\begin{align}
S(n+1,m+1)&=\frac{m}{m+1}S(n+1,m)-\frac{n+1}{m+1}S(n,m)\\
&\stackrel{I.H.}{=}\frac{m}{m+1}\frac{(-1)^{n+1}(n+1)!}{m!}\sum_{i=0}^{m}{m \brack i}\zeta(n+2-i)\\
&\quad\quad-\frac{n+1}{m+1}\frac{(-1)^n n!}{m!}\sum_{i=0}^{m}{m \brack i}\zeta(n+1-i)\\
&=\frac{(-1)^{n+1}(n+1)!}{(m+1)!}\left[\sum_{i=0}^{m}m{m \brack i}\zeta(n+2-i)+\sum_{i=1}^{m+1}{m \brack i-1}\zeta(n+2-i)\right]\\
&\stackrel{*}{=}\frac{(-1)^{n+1}(n+1)!}{(m+1)!}\sum_{i=0}^{m+1}{m+1 \brack i}\zeta(n+2-i),
\end{align}$$
where in ($\stackrel{*}{=}$) the well-known recurrence identity:
$$
m{m \brack i}+{m \brack i-1}={m+1 \brack i}
$$
was used.
Thus, by induction the claim $(1)$ is proved.
Note added:
If one considers formally the case of "negative" $m$ an interesting kind of symmetry can be observed:
$$
\int_0^1u^m\log^n(1-u)\;du=(-1)^n n!\sum_{i=0}^{m}\binom{m}{i}\frac{(-1)^i}{(i+1)^{n+1}}.
$$