Following JavaMan's hint, I came up with the following :
Let the statement$\:\:P(\eta)\equiv\large\frac{1}{\eta}\sum_\limits{j=1}^\eta\:{\normalsize a_j}\:\geq\:\large\prod_\limits{j=1}^\eta\sqrt[\large \eta] {\normalsize a_j}$ $\:\:\:\:\:\:\:\:\:\:\:\:\eta=2^j,\:\:j\in\mathbb{N}$
Now, $\:P(1)\equiv\large\frac{(a_1+a_2)}{2}$$\:\geq\:\sqrt {a_1a_2}\:\:\longleftrightarrow \:\:a_1-\small2$$\sqrt {a_1a_2}+a_2\:\geq\:0\:\:\longleftrightarrow \:\:\left(\sqrt {a_1}-\sqrt {a_2}\right)^2\:\geq\:0$
wich is certainly true.
Let suppose that$\:P(\eta)\:$holds$\:\forall\eta\:$and let's go and show that it also holds for $\:P(\eta+1)\:$
We have$\:\:2\eta=2^{j+1}\:\:\to \:\:\:\large\frac{1}{2\eta}\sum_\limits{j=1}^{2\eta}\:{\normalsize a_j}=\large\frac{1}{2\eta}\sum_\limits{j=1}^{\eta} \:{\normalsize a_j}\:\:+\:\:\large\frac{1}{2\eta}\sum_\limits{j=\eta +1}^{2\eta} \:\normalsize {a_j} \:\:\:$and,
$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \:\:\:\:\:\:\:\:\:\:\large\prod_\limits{j=1}^\eta\:\sqrt[\large 2\eta] {\normalsize a_j}=\sqrt {\large\prod_\limits{j=1}^\eta \sqrt[\large \eta] {\normalsize a_j}\:\:\large\prod_\limits{j=\eta +1}^{2\eta} \sqrt[\large \eta] {\normalsize a_j}}\:\:$.
If $\:a_j\leq\large\frac{d}{da_j}$$(a_j)\:\:\forall j\:\:$then,$\:\:\large\frac{1}{\eta}\sum_\limits{j=1}^\eta\:\normalsize {a_j}$$\:\leq\:\large\frac{1}{\eta}\sum_\limits{j=1}^\eta\:\frac{d}{da_j}(\normalsize a_j)\:\:$and$\:\:\large\prod_\limits{j=1}^\eta\sqrt[\large \eta] {\normalsize a_j}$$\:\leq\:\large\prod_\limits{j=1}^\eta\frac{d}{da_j}(\sqrt[\large \eta]{\normalsize {a_j}})\:$
Therefore, by letting$\:\:\large\Psi_{\eta_1}\:$$=\large\frac{1}{\eta}\sum_\limits{j=1}^{\eta}\:\normalsize a_j\:$,$\large\:\:\Phi_{\eta_1}=\prod_\limits{j=1}^\eta\sqrt[\large \eta] {\normalsize a_j} \:\:$we have . . .
$\large\Psi_{2\eta_1}=\Psi\left(\Psi_{\eta _1},\Psi_{2\eta _{\eta +1}}\right)$$\:\geq\:$$\large\Psi\left(\Phi_{\eta_1},\Phi_{2\eta_{\eta+1}}\right)$$\:\geq\:$$\large\Phi\left(\Phi_{{\eta_1}},\Phi_{2\eta_{\eta+1}}\right)=\large\Phi_{2\eta_1}$
This proves that $\:\large\Psi$$\:\geq\:$$\large\Phi\:\:$when$\:\eta\:$is a power of$\:\:2$.
$\\$
Now, if $\:\nexists j\:\:$such that $\:\eta=2^j\:$, then we let $\:\omega=\kappa^j\:\:$such that$\:\:\kappa>2,\:\:$and we let every term of the sequence
$\:\large\{$$a_j\large\}$$_{ _{\large{\eta +1}}}^{ ^{\Large\omega}}=\large\Psi_{\eta_1}\:\:\:\:\normalsize \to \:\:...$
$\:\:\:\:\:\:\left(\frac{\LARGE\prod_\limits{j=1}^\eta \Large a_j}{\Large\Psi_{\eta_1}^{\omega + \eta}}\right)^{\LARGE\frac{1}{\omega}}\leq\:\large\Psi_{\omega_1} \normalsize ,\:\:\:\:$ since $\large\omega\:$is a power of $\:2\:$
Because$\:\:\large\frac{1}{\eta}\sum_\limits{j=1}^\omega\:{\normalsize a_j}=\large\Psi_{\eta_1}$, it follows that$\:\left(\large\Psi_{\omega_1}\right)^{\large\frac{1}{\omega}}\cdot \left(\large\Psi_{\eta_1}\right)^{{\large1-\frac{\eta}{\omega}}}\leq\:\left(\large\Psi_{\eta_1}\right)^{{\large-\frac{\eta}{\omega}}}$
Then, by putting both sides of the last inequality at the $\:(\large\frac{\omega}{\eta})^{th}\:$power yields :
$\:\large\prod_\limits{j=1}^\eta\sqrt[\large \eta] {\normalsize a_j}\:\leq\:\large\frac{1}{\eta}\sum_\limits{j=1}^\eta\:{\normalsize a_j}$
$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Large\clubsuit$