The elementary permutation matrix that swaps rows $i$ and $j$ is
$$\mathrm E_{ij} := \mathrm I - \mathrm{e}_i \mathrm{e}_i^\top - \mathrm{e}_j \mathrm{e}_j^\top + \mathrm{e}_i \mathrm{e}_j^\top + \mathrm{e}_j \mathrm{e}_i^\top = \mathrm I - \left( \mathrm{e}_i - \mathrm{e}_j \right) \left( \mathrm{e}_i - \mathrm{e}_j \right)^\top$$
Using the Weinstein-Aronszajn determinant identity,
$$\det \left( \mathrm E_{ij} \right) = \det \left( \mathrm I - \left( \mathrm{e}_i - \mathrm{e}_j \right) \left( \mathrm{e}_i - \mathrm{e}_j \right)^\top \right) = 1 - \left( \mathrm{e}_i - \mathrm{e}_j \right)^\top \left( \mathrm{e}_i - \mathrm{e}_j \right) = 1 - \underbrace{\| \mathrm{e}_i - \mathrm{e}_j \|_2^2}_{=2} = \color{blue}{-1}$$