Let $R$ be a ring with finitely many maximal ideals such that $R_{\mathfrak m}$ ($\mathfrak m$ maximal ideal) is noetherian ring for all $\mathfrak m$. Is $R$ noetherian?
I think $R$ has to be noetherian. Let $p_1 \subset p_2 \subset \cdots \subset p_n \subset \cdots$ be an infinite ascending chain of prime ideals in $R$, then I claim that there exist a maximal ideal $m$ which will contain all the prime ideals in this chain (from finiteness of the maximal ideals), this will give a chain of prime ideals in $R$ localised at $m$, but since that has to be finite (the local ring $R_m$ is noetherian) so the chain pulled back will terminate in $R$.