Show $$ \gcd(x^n-1,x^m-1)=x^d-1$$
Trying Euclidian Algorithm where $n=mq+r$ $$ x^n-1=x^m-1 q(x)+x^{r}-1$$
Now
$$\begin{aligned} \gcd(x^n-1,x^m-1)&=gcd(x^n-1,x^r-1) \\&= \vdots \\&= x^d-1 \end{aligned}$$
Trying out with basic defitions
GCD polynomials $\in F[x]$
$\forall f,h \in F[x]$ ,where ($f\neq 0 \vee g\neq 0$) $\exists $(unique) $d\in F[x]$
s.t.
$d|f\wedge d|h$
$d$ is monic
$d$ has maximal degree and $d|f\wedge d|h$
Def Euclidean Domain $gcd$
Let $R$ be a Euclidean domain
$\forall a,b \in R$ where at leats one is not zero ,$\exists d \in R$ s.t
- $d|a \wedge d |b$
- $c|a,c|b \Rightarrow \delta(c) \leq \delta (d)$
Guessing $\delta$ is somekind of norm
Def gcd Integers
$\forall a,b \in Z$ both not zero, $\exists d\in Z$ s.t
- $d|a \wedge d|b$
- $c|a\wedge c|b \Rightarrow c\leq d$
Using basic tools
does $d|n$ so $n=k_1 d $ ,$\exists k_1 \in Z$ s.t
$$\begin{aligned} x^n-1&=(x^d-1)(x^{k_1}+1)=x^{d+k_1}-1 \end{aligned} $$
More tools
Thm 1.2 Hungerford $\forall a,b \in Z$ (not both 0) \exists u,v\in Z (not necassary unique)$
s.t. $$ d=nu+mv$$
Thm for polynomials
$\forall f(x),h(x) \in F[x] , \exists u(x),v(x) \in F[x]$
s.t. $$ d(x)=f(x)u(x)+g(x)v(x)$$
Trying an example to see somekind of a pattern and then try to work an argument in genal
considering $x^6-1$ and $x^2-1$
$$ x^6-1=(x^2-1)(x^4+x^2+x)+0$$
the $gcd(6,2)=2$ so the gcd in polynomials is
$ x^6-1=(x^2-1)(x^4+x^2+1)+0$