I've been told that linear approximation is considered as "good" if it meets the criteria below: $$\lim_{x \to a} \frac{f(x)-f(a)-f'(a)(x-a)}{x-a} = 0$$
As far as I understand, the differentiation of $f(x)$ suppose to provide such a good approximation?
So I wrote a simple script testing out $f = x^2$ at the $a = 2$. Thus following sequence expected to be infinitely small: $$\lim_{x \to 2}\frac{x^2 - 4x - 12}{x - 2}$$
Now let me publish some bits of computation done by my machine:
["f(2.0001) = -160000"; "f(2.0002) = -80000"; "f(2.0003) = -53333.3"; "f(2.0004) = -40000"; "f(2.0005) = -32000"; "f(2.0006) = -26666.7"; "f(2.0007) = -22857.1"; "f(2.0008) = -20000"; "f(2.0009) = -17777.8"; "f(2.001) = -16000"; "f(2.0011) = -14545.5"; "f(2.0012) = -13333.3"; "f(2.0013) = -12307.7"; "f(2.0014) = -11428.6"; "f(2.0015) = -10666.7"; "f(2.0016) = -10000"; "f(2.0017) = -9411.76"; "f(2.0018) = -8888.89"; "f(2.0019) = -8421.05"; "f(2.002) = -8000"; "f(2.0021) = -7619.05"; "f(2.0022) = -7272.73"; "f(2.0023) = -6956.52"; "f(2.0024) = -6666.66"; "f(2.0025) = -6400"; "f(2.0026) = -6153.84"; "f(2.0027) = -5925.92"; "f(2.0028) = -5714.28"; "f(2.0029) = -5517.24"; "f(2.003) = -5333.33"; "f(2.0031) = -5161.29"; "f(2.0032) = -5000"; "f(2.0033) = -4848.48"; "f(2.0034) = -4705.88"; "f(2.0035) = -4571.43"; "f(2.0036) = -4444.44"; "f(2.0037) = -4324.32"; "f(2.0038) = -4210.52"; "f(2.0039) = -4102.56"; "f(2.004) = -4000"; "f(2.0041) = -3902.43"; "f(2.0042) = -3809.52"; "f(2.0043) = -3720.93"; "f(2.0044) = -3636.36"; "f(2.0045) = -3555.55"; "f(2.0046) = -3478.26"; "f(2.0047) = -3404.25"; "f(2.0048) = -3333.33"; "f(2.0049) = -3265.3"]
From the result above clearly seen: the closer $x$ gets to the $a = 2$, the bigger output.
How I suppose to interpret such a result? Did I do a mistake? Did I misunderstand the "good linear approximation" concept? Did I broke math?