I have $$\int_0^{\infty}\frac{\mathrm{d}z}{z^6+1}.$$ I am a bit confused about the residue result in my calculus, but what I've done: $$\frac12\int_{-\infty}^{\infty}\frac{\mathrm{d}z}{z^6+1}=2\pi\mathrm{i}\left(\sum_{j=1}^n\textrm{Res}_j\right),$$ and therefore $z=\sqrt[6]{-1}$.
I figured out 3 roots that are in the contour: \begin{align*} \varphi_1&=\frac{\sqrt3}2+\frac{\mathrm{i}}2,\\ \varphi_2&=-\frac12+\mathrm{i},\\ \varphi_3&=-\frac{\sqrt3}2+\frac{\mathrm{i}}2. \end{align*} To find the residues, I used the formula for the fraction: $$\textrm{Res}_{z = a}=\frac{\xi(a)}{\psi'(a)},$$ so therefore $$F(z) =\frac1{6z^5}\Bigg\lvert_{z= \varphi_1..\varphi_3}$$ and after that, \begin{align*} \textrm{Res}_1&=\frac1{6\left(\frac{\sqrt3}2+\frac{\mathrm{i}}2\right)^5},\\ \textrm{Res}_2&=\frac1{-6\left(\frac12-i\right)^5},\\ \textrm{Res}_3&=\frac1{-6\left(\frac{\sqrt3}2-\frac{\mathrm{i}}2\right)^5}, \end{align*} but the imaginary component just did not dissapear in the final answer, so maybe I am doing something wrong? because I know that when we do real integration with residues, we should get rid of the imaginary component in the final answer.