From this post and following a tip by @Ian in the comments.
If $X_1,\dots,X_n \sim \text{ i.i.d. } N(\mu,\sigma^2)$ with $\displaystyle \bar X= \frac{\sum_{i=1}^n X_i}{n},$ the covariance of the random variables $Y_i=\frac{X_i-\bar X}{\sigma}$ (which I supposed can be read as centered and scaled entries of a random vector) is $-1/n.$
I see that
$$\begin{align} \small \operatorname{cov}\left(Y_i,Y_j\right) = {} & \small \operatorname{cov} \left(\frac{(X_i-\bar X)}{\sigma},\frac{(X_j-\bar X)}{\sigma}\right)\\[2ex] = {} &\small\frac{1}{\sigma^2}E\big[(X_i-\bar X)(X_j-\bar X)\big] - E\big[X_i-\bar X\big]E\big[X_j-\bar X\big]\\[2ex] = {} & \small \frac{1}{\sigma^2}E\big[(X_i-\bar X)(X_j-\bar X)\big]\\[2ex] = {} & \small \frac{1}{\sigma^2}E[(X_i-\mu+\mu-\overline{X})(X_j-\mu+\mu-\overline{X})]\\[2ex] = {} &\small \frac{1}{\sigma^2}\left( E[(X_i-\mu)(X_j-\mu)]+E[(X_i-\mu)(\mu-\overline{X})]+E[(X_j-\mu)(\mu-\overline{X})]+E[(\mu-\overline{X})^2]\right)\\[2ex] = {} &\small\frac{1}{\sigma^2}\left( E[(X_i-\mu)(\mu-\overline{X})]+E[(X_j-\mu)(\mu-\overline{X})]+E[(\mu-\overline{X})^2]\right) \end{align}$$
The last term $E[(\mu-\overline{X})^2=\operatorname{var}(\bar X)=\frac{\sigma^2}{n}$ as derived here.
Does, then
$$E[(X_i-\mu)(\mu-\overline{X})]+E[(X_j-\mu)(\mu-\overline{X})] \overset{?}= \frac{-2\sigma^2}{n} \text{ ?}$$