Let us start defining a function $T:\mathbb{R}^{n \times n}\rightarrow \mathbb{R}^{n \times n}$ such that $T(x)=I+xA,$ for all $x\in\mathbb{R}^{n\times n}.$ Note that the fixed point iteration $x_{n+1} = T(x_n)$ staring with $x_0=I$ is equal to the sum $x_k=\sum^{k}_{i=0}A^i.$ Hence, we only need to show that $x_k$ converges to show that $\sum^{k}_{i=0}A^i$ converges.
Note that $$ \begin{split} T^{k+1}(x)-T^{k+1}(y) = & (I + T^{k}(x) A) - (I + T^{k}(y) A)\\ =& T^{k}(x) A - T^{k}(y) A \\ = & (T^{k}(x)-T^{k}(y))A, \end{split} $$ for all $x,y\in \mathbb{R}^{n \times n}. $Thus, by induction, $$T^{k}(x)-T^{k}(y) = (x-y)A^{k},$$ for all $k\in\mathbb{N}$ and all $x,y\in \mathbb{R}^{n \times n}$. Now, choosing your favorite submultiplicative norm, since $\lim_{k\rightarrow \infty} \|A^{k}\|^{1/k} = \rho(A)<1,$ we can choose $k_0$ big enough such that $\|A^{k_{0}}\|<1.$ Hence, $$\|T^{k_0}(x)-T^{k_0}(y)\| \leq \|x-y\|\|A^{k_0}\|.$$ Hence, $T^{k_0}$ is a contraction. Consequently, the fixed point iteration $z_{k+1}=g(z_k)$, with $g$ given by $g(x)=T^{k_0}(x),$ for all $x\in\mathbb{R}^{n \times n},$ converges to the unique fixed point of $g$ independently to the starting point $z_0\in\mathbb{R}^{n \times n}, $ as stated here.
Let $y^{*}\in\mathbb{R}^{n\times n}$ be the unique fixed point for $g$. Given a natural number $0 \leq i< k_0$, as previously commented, the fixed point iteration $z_{k+1} = g(z_{k})$ staring with $z_0=T^{i}(x_0)$ will converge to $y^{*}$. Since $g$ commutes with $T$, we have that $$\begin{split} y^{*} =& \lim_{k \rightarrow \infty} z_{k} \\
=& \lim_{k \rightarrow \infty} g^{k}(T^{i}(x_0))\\
=& \lim_{k \rightarrow \infty} T^{i}(g^{k}(x_0))\\ =& \lim_{k \rightarrow \infty} T^{i}(T^{k_0 k} (x_0))\\ =& \lim_{k \rightarrow \infty} T^{k_0 k + i} (x_0)\\
=& \lim_{k \rightarrow \infty} x_{k_0 k + i}.\end{split}$$ Taking into account that the last conclusion is true for all $0 \leq i<k_0$, all of the subsequences $\{x_{k_0 k +i}\}_{k\in\mathbb{N}}$ of $\{x_{k}\}_{k\in\mathbb{N}}$ converges to $y^{*}$. Thanks to Division theorem, this is enough to show that that $\{x_{k}\}_{k\in\mathbb{N}}$ converges to $y^{*}$.
As a last observation, I will show that $y^{*}$ is actually the inverse of $I-A.$ Considering that $y^{*}$ is the fixed point of $g$ and limit of the sequence defined by $y_{k+1}=g(y_{k})$ staring with $x_0=T(y^{*}).$ The calculations $$\begin{split} y^{*} =& \lim_{k \rightarrow \infty} y_{k} \\
=& \lim_{k \rightarrow \infty} g^{k}(T(y^{*}))\\
=& \lim_{k \rightarrow \infty} T(g^{k}(y^{*}))\\ =& \lim_{k \rightarrow \infty} T(y^{*})\\ =& T(y^{*}).\end{split}$$ shows that $y^{*}=T(y^{*})=I-Ay^{*}$. Hence, $y^{*}(I-A) = I.$ This shows that $(I-A)y^{*}=I$ also, since all square matrices which has a left inverse has a right inverse as well. This shows that $y^{*}$ is the inverse of $I-A.$